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The simulation of multibody systems with rigid contacts entails the solution
of nonsmooth equations of motion. The dynamics is nonsmooth because of
the discontinuous nature of noninterpenetration, collision, and adhesion con-
straints.

We propose a solver that is able to handle the simulation of multibody
systems of vast complexity, with more than 100,000 colliding rigid bodies.
The huge number of nonsmooth constraints arising from unilateral contacts
with friction gives rise to a nonlinear complementarity problem (NCP), which
we solve by means of a high-performance iterative method.

The method has been implemented as a high-performance software library,
written in C++. Complex simulation scenarios involving thousands of moving
parts have been extensively tested, showing a remarkable performance of the
numerical scheme compared to other algorithms.

1 Introduction

When simulating nonsmooth systems affected by discontinuities, such as those
imposed by frictionless or frictional contacts, the direct application of nu-
merical methods for ordinary differential equations and differential algebraic
equations can be hard, if not impossible [1]. Some naive numerical approaches
try to circumvent the complexity of nonsmooth dynamics by introducing a
smooth and stiff approximation of the problem, however at a cost of requiring
prohibitively small time steps to achieve stability.

Other approaches try to solve the nonsmooth integral by piecewise integra-
tion, but such methods cannot be applied to systems with a large number of
contacts because stop-and-restart schemes can easily enter infinite or ill-posed
loops.

These limitations motivate our research on innovative methods that deal
directly with the discontinuities of the equations of motion. Different from
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the case of smooth dynamics, where for the past decade efficient numerical
methods have been able to compute solutions in linear time [2], the case
of nonsmooth dynamics introduces many numerical difficulties that are still
under active and fertile investigation in the mathematical community.

Among the various potential applications of nonsmooth dynamics are gran-
ular flows, rock soil dynamics, refueling of pebble-bed nuclear reactors, inter-
action between robot and large environments, and real-time simulations for
augmented reality problems that are challenging or still impossible to simulate
because of the severe computational requirements.

We formulate the problem in terms of differential inclusions over the speed-
impulses space [11], a fertile approach that expresses the problem as a differen-
tial complementarity problem (DCP), requiring the solution of a single NCP
per time step [7]. Posing the problem in terms of speeds and impulses rather
than in terms of accelerations and reaction forces has various advantages. How-
ever, here we do not enter into the details of the integration scheme, except
to mention that our focus is a recently-proposed optimization-based scheme
[9], for which details will be presented as needed for setting up the NCPs. For
additional information about such schemes the interested reader can examine
the bibliography [3]. Since the main bottleneck is by far represented by the
NCP, which must be solved at each step, we will focus on this part.

The difficulty of this process rests with the fact that the more the contacts
and collisions, the more the complementarity constraints, and the higher the
computational overhead [4]. Previous efforts in solving NCP problems arising
in nonsmooth dynamics were based on approximating them by Linear Com-
plementarity Problems (LCPs), since solvers for LCPs are available, such as
the simplex-based pivoting methods of Lemke or Dantzing; nonetheless these
pivoting methods suffer exponential explosion and cannot practically handle
systems with more than a few hundred contacts [13].

A more promising way to handle NCP problems, followed in this work,
is iterative methods, in particular, the projected-SOR and projected-Gauss-
Seidel [14][15]. Although the idea of solving frictional problems by means
of iterative schemes with projections is not new [5], our iterative method is
based on an improved projected-block-symmetric-overrelaxed scheme which
aims at the best computational performance when applied to a large number
of contacts with friction. With some requirements on the spectral radius of the
iteration matrix, and since the scheme from [9] results in convex subproblems,
we can prove that, when applied to our formulation, the iteration is a fixed-
point contraction that converges monotonically to the NCP solution [6].

2 Implementation

Let us introduce the position vector q ∈ R
nq , the speed vector q̇ ∈ R

nq , the
mass matrix [M] ∈ R

nq×nq , and the sum of external applied forces and inertial
forces ft(t

(l),q(l), q̇(l)) ∈ R
nq .
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Fig. 1. Nonexpansive projection on the ith convex friction cone.

The vector of Lagrangian multipliers, representing the unknown impulses
in constraints and in contact points, is the vector γ ∈ R

nc , which can be

partitioned into p subvectors γi ∈ R
ni such that γ =

{

γT
1 , γT

2 , . . . , γT
p

}T
.

In detail, for each bilateral scalar constraint there is a corresponding one-
dimensional impulse γi ∈ R

1,∀i ∈ GC , along with the corresponding bi-
lateral constraint equation Ci(q, t) = 0 ∈ R

1 and Jacobian [Cq(q, t)]i =
∇qCi(q, t)T ∈ R

nq×1.
Similarly, for each unilateral constraint we have a corresponding one-

dimensional impulse γi ∈ R
1,∀i ∈ GD, along with the corresponding bi-

lateral constraint equation Di(q, t) > 0 ∈ R
1 and Jacobian [Dq(q, t)]i =

∇qDi(q, t)T ∈ R
nq×1.

If we also introduce contact constraints with nonlinear friction cones in
3D space, the γ vector includes the vectors of unknown normal and tangential
impulses, that is, the three-dimensional γi ∈ R

3,∀i ∈ GF , along with the cor-
responding equations Fi(q) = 0 ∈ R

3 and Jacobian [Fq(q)]i = ∇qFi(q, t)T ∈
R

nq×3.
These vectors and matrices have a block structure coresponding to the

three components n, u, v (normal, u-tangential, v-tangential), that is, γi =

{γi,n, γi,u, γi,v}T
and [Fq]i =

[

Fq
T
i,n

|Fq
T
i,u

|Fq
T
i,v

]T

. Each contact point has a

friction coefficient µi,∀i ∈ GF .
With a time step h and a stabilization coefficient 0 < K < 1, we expand

the original first-order DCP formulation of [7] as follows.
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M(q̇(l+1) − q̇l) =
∑

i∈GC

(

[Cq]
T
i γi

)

+
∑

i∈GD

(

[Dq]
T
i γi

)

+
∑

i∈GF

(

[Fq]
T
i γi

)

+

+ hft(t
(l),q(l), q̇(l)) (1)

0 =
K

h
Ci(q

(l), q̇(l), t) +
∂Ci

∂t
+ [Cq]iq̇

(l+1), i ∈ GC (2)

0 ≤ K

h
Di(q

(l)) + [Dq]iq̇
(l+1) ⊥ γi ≥ 0, i ∈ GD (3)

0 ≤ K

h
Fi,n(q(l)) + [Fq]i,nq̇(l+1) ⊥ γi,n ≥ 0, i ∈ GF (4)

(γi,u, γi,v)
i∈GF

= argmin
µiγn≥

√
(γu)2+(γv)2

[

q̇T (γi,u[Fq]
T
i,u + γi,v[Fq]

T
i,v)

]

,(5)

q(l+1) − q(l) = hq̇(l+1). (6)

The DCP problem above is affected by complementarity constraints (3)
and (4), where only one of the inequalities can hold at a single time. An
alternative way to write complementarity constraints a > 0 ⊥ b > 0 is by
inner product: a > 0,b > 0, 〈a,b〉 = 0.

The extremely nonlinear nature of complementarity conditions is the main
cause of computational overhead. Moreover, the introduction of the original
Coloumb model in the DCP leads to an NCP problem that be nonconvex
under some circumstances [8]. A possible workaround is to relax the Coloumb
original assumptions and to replace (4) with the following:

0 ≤ K

h
Fi,n(q(l)) + [Fq]i,nq̇(l+1) − µi

√

([Fq]i,uq̇)2 + ([Fq]i,vq̇)2 ⊥
0 ≤ γi,n, i ∈ GF .

(7)

This modification to the original scheme has negligible effects for small
values of q̇ or µ, converges to the same class of weak solutions as the original
scheme (described in [10, 3] for h → 0, and has the positive effect of making
the NCP problem always convex [9]. The resulting NCP is also a convex
cone complementarity problem (CCP), hence a special case of convex VI,
variational inequality.

For a more compact notation, we assume that constraints are ordered such
that i ∈ GC < i ∈ GD < i ∈ GF . Hence, we can introduce the following vectors
and matrices:

γE =
{

γT
C |γT

D|γT
T

}T ∈ R
nc (8)

[Eq] =
[

[Cq]
T |[Dq]

T |[Fq]
T
]T ∈ R

nq×nc (9)

bE =
{

bT
C |bT

D|bT
T

}T ∈ R
nc , (10)

where, if we assume mC bilateral constraints, mD unilateral constraints, and
mF frictional contacts, we have the following:
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bC =

{

−K

h
C1 −

∂C1

∂t
,−K

h
C2 −

∂C2

∂t
, . . . ,−K

h
CmC

− ∂CmC

∂t

}T

(11)

bD =

{

−K

h
D1,−

K

h
D2, . . . ,−

K

h
DmD

}T

(12)

bF =

{

−K

h
F1,n, 0, 0,−K

h
F2,n, 0, 0, . . . ,−K

h
FmF ,n, 0, 0

}T

. (13)

We now introduce k = [M]q̇l + hft, [N] = [Eq][M]−1[Eq]
T and r =

[Eq][M]−1k − bE . We also introduce the convex cones Υi, defined as follows

Υi =











R, i ∈ GC

R
+, i ∈ GD

{

(γn, γu, γv) ∈ R | µiγn ≥
√

γ2
u + γ2

v

}

, i ∈ GF .

(14)

Their polar cones Λi = Υ ◦
i , where we denote by ◦ the polar set, can be

immediately calculated as

−Λi =











0, i ∈ GC

R
+, i ∈ GD

{

(sn, su, sv) ∈ R | sn ≥ µi
√

s2
u + s2

v

}

, i ∈ GF .

(15)

Denoting the total index set G = GC ∪GD ∪GF , the direct sum of these cones
Υ =

⊕

i∈G Υi, and Λ =
⊕

i∈G Λi = Υ o, and using equations (1)- (15) we
obtain a canonical CCP (for full details, see [6]):

([N]γE + r) ∈ −Λ, γE ∈ Υ, 〈([N]γE + r) , γE〉 = 0, (16)

which can be solved for unknowns γE . One can then obtain the unknown
speeds with the simple formula

q̇ = [M]−1(k + [Eq]
T γE). (17)

To solve (16), which represents the most relevant computational burden,
we propose an iterative scheme. We make the following assumptions:

A1 The matrix [N] of the NCP problem is symmetric and positive semidefinite.
A2 There exists a positive number α > 0 such that, at any iteration r, r =

0, 1, 2 . . ., we have that Br ≻ αI.
A3 There exists a positive number β > 0 such that, at any iteration r, r =

0, 1, 2 . . ., we have that (γr+1 − γr)T
(

(λω[B]r)
−1 − [N]

2

)

(γr+1 − γr) ≥
β

∥

∥γr+1 − γr
∥

∥

2
.
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With these assumptions, we can prove the convergence to the NCP solution
by means of the fixed-point iteration

γr+1
E = ΠΥ+ (γr

E − ω[Br] ([N]γr
E + r)) , (18)

where we introduced the nonsmooth projection mapping ΠΥi
(·) : R

nc → R
nc

onto the boundary of a nith dimensional convex cone Υ . See [6] for a detailed
proof.

For the iteration matrix [Br] we use the following block-diagonal structure:

[Br] =











η1In1
0 · · · 0

0 η2In2
· · · 0

...
...

. . .
...

0 0 · · · ηni
Inni











. (19)

The complete projection operator ΠΥ+ : R
nc → R

nc can be expressed as

ΠΥ+ =
{

ΠΥ1
(γ1)

T , . . . ΠΥp(γp)
T
}T

.

Each single ΠΥi
(·) projection operator behaves as ΠΥ (γi) = argminζ∈Υi

||γi−
ζ|| in order to be globally nonexpansive for projection on convex subspace Υi.

For the multipliers introduced by friction constraints, it is enough to in-
troduce a straightforward mapping ΠΥi

(·) : R
3 → R

3, i ∈ GF , to be applied
multiple times on all the triplets of contact multipliers γi, i ∈ GF . Such a
projection can be implemented as depicted in Fig.1, where three subcases are
detected:

• When γi is inside the Υi cone, the vector is left untouched.
• When γi is inside the Υ o

i polar cone, it maps to the origin {0, 0, 0}.
• Otherwise γi is projected to the nearest point on the Υi cone.

One can verify that such a mapping exhibits ||ΠΥ (a) − ΠΥ (b)|| ≤ ||a − b||.
Hence the nonexpansive property holds.

This orthogonal projection onto the surface of the cone can be easily ob-
tained by means of a few operations. First we compute γr =

√

γ2
u + γ2

v . The
reaction is inside the friction cone for γr < µγn and inside the polar cone
for γr < − 1

µ
γn. For the remaining case, applying the Pitagora theorem on

triangle OCA and similarity between triangles OCA and OCD, we easily get

Πn =
γrµ + γn

µ2 + 1
, Πr = µΠn , Πu = γu

Πr

γr

, Πv = γv

Πr

γr

. (20)

The projective operator, modified for the complete case including bilateral
constraints C, generic unilateral constraints D, and frictional contacts F,
becomes the following nonsmooth mapping:
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∀i ∈ GC Πi = γi

∀i ∈ GD ∧ γi > 0 Πi = γi

∀i ∈ GD ∧ γi ≤ 0 Πi = 0
∀i ∈ GF ∧ γr < µiγn Πi = γi

∀i ∈ GF ∧ γr < − 1
µi

γn Πi = {0, 0, 0}T

∀i ∈ GF ∧ γr > µiγn ∧ γr > − 1
µi

γn Πi,n = γrµi+γn

µ2

i
+1

Πi,u = γu
µiΠi,n

γr

Πi,v = γv
µiΠi,n

γr

. (21)

Iterations can be computed storing the [N] matrix explicitly, except for
the sparse Jacobians of the constraints, hence resulting in strictly O(n) space
requirements. To this end, we have developed efficient data structures and
sparsity-preserving multiplication algorithms.

Below we present the final algorithm with some improvements, most no-
ticeably, with the addition of an acceleration parameter λ and implementing
immediate symmetric updates as in SSOR fixed-point methods. For reasons
of space, we omit the simplifications that allow us to compute the iteration
without explicitly building the [N] matrix, and we do not discuss the details
of how to choose the η values.

ALGORITHM

1. For i = 1, 2, . . . , p compute the matrices si = [M]−1[Eq]
T
i and matrices

gi = [Eq]isi (the latter being simple scalars for i ∈ GC ∪ GD).
2. For i ∈ GF , compute ηi = 3

Trace(gi)

For i ∈ GC ∪ GD, compute ηi = 1
gi

3. If warm starting with with some initial guess γ∗, initialize reactions as
γ0 = γ∗, otherwise γ0 = 0.

4. Initialize speeds: q̇ =
∑nc

i=1 siγ
0
i + [M]−1k.

5. For i = 1, 2, . . . p, perform the updates
δr
i = (γr

i − ωηi ([Eq]iq̇
r + bi));

γr+1
i = λΠΥ (δr

i ) + (1 − λ)γr
i ;

∆γr+1
i = γr+1

i − γr
i ;

q̇ := q̇ + si∆γr+1
i .

6. r := r + 1
7. For i = p, . . . , 2, 1, optionally perform symmetric updates

δr
i = (γr

i − ωηi ([Eq]iq̇
r + bi));

γr+1
i = λΠΥ (δr

i ) + (1 − λ)γr
i ;

∆γr+1
i = γr+1

i − γr
i ;

q̇ := q̇ + si∆γr+1
i .

8. r := r + 1
9. Repeat the loop 5 until convergence or until maximum number of itera-

tions.
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3 Examples

In this section, we present results from the application of our algorithm to
two examples: a small-scale spider robot simulation example and a large-scale
granular flow example.

3.1 Spider Robot

A walking robot has been modeled and simulated (see Fig. 2). The robot has
six legs, each being actuated by two servomotors, for a total of 12 actuators.
Multiple linkages and revolute joints are used to constrain the gait motion of
the leg, hence leading to a total of 37 moving parts.

Each leg can collide with the environment. In detail, the feet collide with
the ground in an intermittent pattern, introducing nonsmooth phenomena
that must be handled by the solver. The rigid contacts are affected by a
friction coefficient µ = 0.6. Since this numerical approach does not introduce
artificial stiffness into the system (unlike approaches that use spring-dashpot
regularization at the point of contact), large integration time steps are allowed:
we use h = 0.01[s].

Although 50 iterations were used for each NCP problem, the CPU time
for computing each time step is about 1 ms on a 2GHz laptop. That is, the
simulation is almost ten times faster than the real-time requirement.

For simpler systems (pendulum, four-bar linkages, etc.) where a smaller
number of constraints are used and a lower number of iterations can meet
the tolerance requirements, the simulation can run almost one hundred times
faster than real time.

3.2 Granular Flow

As a benchmark for measuring the performance of the solver, we used the
granular flow simulation depicted in Fig. 3. A box is filled with a cascade of
small spheres, which fill the inner space and slowly flow out from a lateral
opening. All spheres are subject to rigid contacts with friction.

This benchmark represents one of the most critical scenarios because, in
general, the stability of the integration and the speed of convergence of the
solver are both affected negatively by dense packing of objects.

Multiple tests were performed with an increasing number of spheres, up
to 50,000 colliding objects. The solver is able to handle problems with more
than two millions unknowns. On average, the CPU time for a single time step,
with 120 iterations and 50,000 objects, is 18s.

Note that the large number of iterations is mandatory if a decent toler-
ance is required: in this benchmark, the error of interpenetration between the
colliding geometries does not exceed 0.002d, with d being the radius of the
spheres. If a less precise solution were tolerated, a smaller number of iterations
could be used, hence improving the CPU performance even further.
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As a side note, we remark that the NCP solver acts on potential contacts
fed by a collision-detection algorithm. This algorithm should be as efficient as
possible; otherwise the time spent in computing the points of contacts will be
comparable to the time used for solving the NCP problem. 3

  

Fig. 2. Example: frames from a real-time simulation of a walking robot with 37
articulated parts, 12 motors, and frictional contacts between legs and floor.

   

Fig. 3. Stress test: granular flow of spheres falling into a shaker. The figure shows the
case with 9,000 spheres. A system of more than 100,000 complementarity constraints
is solved at each step.

3 Although this case of contact between spheres is trivial insofar complexity of
contact features, we stress the importance of implementing a fast and reliable
collision-detection engine for handling also more general cases. For example, our
collision engine is able to compute collisions between generic compound shapes,
convex or not, and exploits a sweep-and-prune broad phase that avoids superlinear
algorithmic complexity.
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4 Conclusions

We have developed a fast computational method to handle multibody systems
encompassing nonsmooth phenomena, such as those caused by contacts and
friction.

The method has been implemented as a C++ API in the Chrono::Engine
middleware and extensively tested with complex simulation scenarios [17].
Benchmarks and comparisons show the superior performance of the method
compared to other algorithms.

Our algorithm can run in O(n) space and time. Thus it can simulate in
real-time even the most complex mechanical systems.
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