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aUniversità degli Studi di Parma, Dipartimento di Ingegneria Industriale, 43100 Parma, Italy, tasora@ied.unipr.it
bMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA,

anitescu@mcs.anl.gov

Abstract

This paper proposes an iterative method that can simulate mechanical systems featuring a large number of contacts and joints
between rigid bodies. The numerical method behaves as a contractive mapping that converges to the solution of a cone comple-
mentarity problem by means of iterated fixed-point steps with separable projections onto convex manifolds. Since computational
speed and robustness are important issues when dealing with a large number of frictional contacts, we have performed special
algorithmic optimizations in order to translate the numerical scheme into a matrix-free algorithm with O(n) space complexity and
easy implementation. A modified version, that can run on parallel computers is discussed. A multithreaded version of the method
has been used to simulate systems with more than a million contacts with friction.
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1. Introduction

Many engineering problems involve unilateral con-
tacts between rigid bodies, for instance, in simulations
of robotic cells and part feeders, in cam followers, in
masonry stability analysis, and in packaging devices
such as those depicted in Fig. 1.

The dynamical simulation of such systems is compli-
cated by the nonsmooth nature of the frictional con-
straints. When the number of contacts between bod-
ies increases to thousands or millions, as in the case
of granular flows in silos or in rock-soil dynamics, the
computational efficiency of traditional methods can
become an issue even on supercomputers.

A straightforward approach to solve this class of
problems may consist of regularization schemes, that
transform the discontinuities into a stiff force field.
This is, for example, the approach often adopted by
discrete element schemes (DEMs) because it does
not require major modifications to traditional solvers
based on smooth ordinary differential equations
(ODEs) [15,35,36,30]. Nevertheless, although success-
fully used to simulate granular flows with many con-
tacts, the regularization approach requires small time
steps to achieve numerical stability. Moreover, it forces
the user to introduce artificial stiffness or heuristic
parameters: actually, if the deformation of the parts is
negligible, a method that can use large time steps and
unconditionally rigid bodies would be more welcome.

These considerations encouraged our research on a
fast, robust, and unified numerical scheme that can
handle complex mechanical systems made of rigid bod-
ies with an arbitrary number of contacts and joints.
Such a scheme aims at simulating mechanical systems
ranging from the simplest (articulated linkages with
few bilateral kinematic pairs and motors) up to the
most complex (for example, a bulldozer interacting
with millions of particles of sand with the tracks and
the blade).

In this context, the biggest challenge comes from the
discontinuous nature of the adhesion constraints and
non-interpenetration constraints; in fact, the simula-
tion of rigid contacts embeds the solution of nonsmooth
equations. To this end, the straightforward application
of numerical methods for ODEs or differential alge-
braic equations (DAEs) is inefficient. In fact, a naive
approach based on piecewise integrals is virtually im-
possible because it would require stopping and restart-
ing the integrator at each discontinuity to change the
active set of constraints. This could work only if there
were a limited number of unilateral constraints [20,21].
Otherwise, the risk of combinatorial explosion could
severely affect the computational efficiency to the point
where the simulation would come to a halt [45].

The nature of nonsmooth dynamics requires the
adoption of a deeper mathematical framework, where
concepts like set-valued functions, inclusions, and com-
plementarity conditions are used [33]. In particular,
recent time-stepping approaches construct weak solu-
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tions of the differential variational inequality (DVI)
that describes the continuous time motion of rigid
bodies with collision, contact, and friction. Earlier nu-
merical methods based on differential variational in-
equalities can be found in [26,25,24], whereas the DVI
formulation has been discussed in full generality and
classified by differential index only recently, in [37,29].

Two main families of solvers spawn from the DVI
formulation: those that lead to an acceleration-force
complementarity problem [9,31,45] and that gener-
ate velocity-impulse, complementarity-based time-
stepping methods [39,6,7]. The latter case results in
schemes convergent to a vector measure differential
inclusion, so named because it operates on vector mea-
sures or distributions [40]. It has the advantage that
it can solve a class of problems with Coulomb fric-
tion that would be unsolvable in an acceleration-force
context, as the Painlevé paradox [38].

In both cases, the introduction of inequalities in
time-stepping schemes for DVI, together with a poly-
hedral approximation of the friction cone as a faceted
pyramid, leads to linear complementarity problems
(LCPs) [40], which are systems of complementary
inequalities to be satisfied simultaneously [14]. Such
LCPs, which are hard to solve because of their inher-
ent nonlinear nature, must be solved at each time step
in order to advance the integrator [24,40].

Most literature about this topic shows how, for a
large number of contacts and rigid bodies, usual LCP
solution schemes have significant limitations. In fact,
classical approaches to the solution of LCP problems
are based on simplex methods, also known as direct or
pivoting methods, originating from the algorithms of
Lemke and Dantzig [13]. These methods may exhibit
an exponential worst-case complexity [10]. Our experi-
ence shows that, in spite of algorithmic optimizations
[43], simplex methods still cannot practically handle
multibody systems with more than one hundred col-
liding bodies.

Moreover, in the three-dimensional case, typical
LCP solvers can be used only at the cost of ap-
proximating the Coulomb friction cone with faceted
pyramids [40,45,6]. Not only does this expedient intro-
duces artificial anisotropy in the friction phenomenon;
it also impacts negatively the performance of LCP
solvers, which is already critical in general, because
the finite approximation of cones results in a much
larger problem.

A precise description of the friction cone constraint
in three-dimensional space would imply a nonlinear
complementarity problem. This is a broader class of
problems in mathematical programming, for which no
off-the-shelf solvers are available. A custom method
must be developed.

The above-mentioned limitations of the existing
LCP approaches led us to develop a novel solution
method based on a fixed-point iteration with projec-
tion on a convex set and presented in [8]. That method
extended the seminal work on iterative LCP solvers
by Mangasarian [28] to the LCP case with conical
constraints, that is, a cone complementarity problem.
In the same work we presented the convergence theory

for the iteration; the scheme converges under certain
conditions that do not include a small friction assump-
tion. Applied to granular flow problems, our method
demonstrated high performance and was able to solve
benchmarks with up to a million dual variables.

The time-stepping scheme was proven to converge
in a measure differential inclusion sense to the solution
of the original continuous-time DVI [2].

In the present paper we extend our original formu-
lation [8] in several ways.

(i) We enhance our approach to the case of both
frictional contacts and bilateral constraints, ei-
ther scleronomic or rheonomic (motors, imposed
trajectories, etc.). This extension cannot be ob-
tained with full theoretical guarantees of conver-
gence for the algorithm in [8] by simply replacing
the bilateral constraint with two unilateral con-
straints. The latter case allows for unbounded in-
ternal forces, for which the approach in [8, Corol-
lary 1] does not apply (the resulting constraint
cone is not pointed).

(ii) We present practical algorithmic details and op-
timizations that can be adopted to implement
the method in a matrix-free, memory-efficient,
reliable, fast, and robust way.

(iii) We demonstrate the performance of our ap-
proach for configurations that include both joint
and contact-with-friction constraints.

A significant side-effect of the proposed method is
that it proceeds monotonically toward the solution. If
implemented in real-time applications such as virtual-
reality and man-in-the-loop vehicle simulations, where
the requirements on precision are less severe than those
on the computational times, it can be stopped prema-
turely before the tolerance threshold is reached.

We believe that the CAD community will welcome
the availability of this solver because of its ability
of simulating generic mechanisms regardless of the
number of parts, joints, and frictional contacts. To
this end we developed a physics library based on this
time-stepping method, written in C++ and called
Chrono::Engine [41], that can be used by third parties
to develop simulation software. Indeed, we used it to
implement a 3D graphical interface for the interac-
tive modeling and visualization of multibody systems.
Moreover, we have already simulated many types of
mechanical problems, ranging from robots to granular
flows with hundreds of thousands of rigid bodies with
friction.

Among the most complex tests, we simulated the
granular flow of a fourth-generation pebble bed nuclear
reactor. Thanks to the numerical scheme, the refueling
motion of 170,000 uranium spheres was simulated on
a single computer, whereas DEM methods required a
supercomputer and much more CPU time [42].

2. The model

This section presents a formulation for the nons-
mooth dynamics of multibody systems in the most
general case of both bilateral constraints and frictional
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Fig. 1. Simulation of a palletizing device: a multibody problem
with many frictional contacts.

contacts. We remark that frictional contacts embed
also the case of unilateral constraints, since those rep-
resent a special case of contacts without friction.

2.1. System state

The position of the system at time t is represented
by mq generalized coordinates q(t) ∈ R

mq . In the case
of rigid bodies in three-dimensional space, these coor-
dinates include the positions x ∈ R

3 of the centers of
mass of all bodies, as well as the rotations of all body
frames respect to the absolute frame.

We represent rotations by means of unimodular
quaternions ρ(t) ∈ S3 ⊂ H. Since quaternions are
four-dimensional numbers, each rigid body in our
formulation requires 3+4=7 scalar coordinates plus
one constraint ||ρ|| = 1 enforcing the unit length of
the quaternion 1 . With this notation, we define the

position vector to be q = {x1T

, ρ1T

, x2T

, ρ2T

, ...}.
Generalized velocities are represented by the vec-

tor v(t) ∈ R
mv , where for each body we consider the

speed of the center of mass ẋ ∈ R
3 and the angu-

lar velocity ωl, expressed in local body coordinates.
Therefore a system with n bodies in three dimensions
is represented by mv = 6n speed coordinates. With
this notation, we define the speed vector to be v =

{ẋ1T

, ω1T

l , ẋ2T

, ω2T

l , ...}T .
Given the angular velocity ωl, one can obtain the

time derivative ρ̇ of the quaternion, if needed, by build-
ing the purely imaginary quaternion {0, ωl} and com-
puting the quaternion product ρ̇ = 1

2ρ{0, ωl}. On this
basis, we introduce q̇ = Γ(q, v) as the linear map that
gives the time derivative of the position:

1 Different methods can be used to represent the rotation. If
one stores the 3x3 rotation matrix A ∈ SO(3, R), each body will
require 3+9=12 scalar coordinates, which are highly redundant.
On the other hand, storing only three angles (such as the three
Euler angles or the three Cardano angles) could give problems
of singularities. Not being affected by these limitations, quater-
nions are better suited for computational application.

Γ(q, v) = q̇ = {ẋ1T

, ρ̇1T

, ẋ2T

, ρ̇2T

, ...} =

= {ẋ1T

,
1

2
ρ1{0, ω1

l }T , ẋ2T

,
1

2
ρ2{0, ω2

l }T , ...}T .

(1)

For the time integration of the system position,
different options exist for the function q(t+∆t) =
Λ(q(t), v, ∆t), the simplest one being the first-order

explicit Euler formula q(t+∆t) = q(t) +∆tq̇(t). Indeed,
for body positions a straightforward first-order differ-
ential approximation is used: x(t+∆t) = x(t) + ∆tẋ(t).
However, if the same approach is used for quaternions,
as in ρ(t+∆t) = ρ(t) + ∆tρ̇(t), an annoying situation
can happen: quaternions may slowly lose the unimod-
ularity and drift away from the S3 manifold, unless
some stabilization is used to enforce ||ρ|| = 1. There-
fore, we prefer to integrate the rotations using the
following exponential map that preserves the unimod-
ularity of the quaternions:

ρ(t+∆t) = ρ(t)e{0, 1

2
ωl∆t}, (2)

so we get

ρ(t+∆t) = Λ(q(t), v, ∆t) =






x1,(t) + ∆tẋ1,(t)

ρ1,(t)e{0, 1

2
ω1

l ∆t}

x2,(t) + ∆tẋ2,(t)

ρ2,(t)e{0, 1

2
ω2

l ∆t}

...






.

(3)
We can explicitly compute the second factor of the

quaternion product thanks to the property e{0,uα} =
{cosα, u sin α} of quaternion exponentials; we obtain

e{0, 1
2
ωl∆t} = e{0,(ωl/|ωl|)

1

2
|ωl|∆t} =

= {cos
1

2
|ωl|∆t,

ωl

|ωl|
sin

1

2
|ωl|∆t}. (4)

Since (2) preserves the norm of the quaternions,
large ∆t time steps can be used (although, once in a
while, it is safer to normalize all quaternions because
numerical roundoff can accumulate small errors). Yet
we can demonstrate that, for ∆t → 0, the formula (2)
still corresponds to ρ(t+∆t) = ρ(t) + ∆tρ̇. In fact,

ρ̇ = lim
∆t→0

ρ(t+∆t) − ρ(t)

∆t
. (5)

Hence, substituting (2) in (5), we can write

ρ̇ = lim
∆t→0

ρ(t)
{cos 1

2 |ωl|∆t, ωl

|ωl|
sin 1

2 |ωl|∆t} − {1,0}
∆t

.

(6)
Applying the Hôpital theorem and simplifying, we

obtain ρ̇ = 1
2ρ{0, ωl}, as expected.

2.2. Bilateral constraints

Most kinematic pairs, such as revolute joints, pris-
matic joints, and glyphs, can be expressed by means
of holonomic constraints over the relative position of
two bodies. In general, we introduce a set GB of scalar
equations

Ψi(q, t) = 0, i ∈ GB. (7)
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The size of the set GB is the number of basic scalar
bilateral constraints, not necessarily corresponding to
complex three-dimensional mechanical joints 2 .

We assume that Ψi(q, t) is smooth, so that it can
be differentiated to obtain the Jacobian ∇qΨ

i =[
∂Ψi/∂q

]T
.

Constraints must be respected also at the velocity
level: the full time-derivative of the ith constraint equa-
tion is

dΨi(q, t)

dt
=

∂Ψi

∂q
q̇ +

∂Ψi

∂t
= ∇qΨ

iT

q̇ +
∂Ψi

∂t
= 0

dΨi(q, t)

dt
=∇qΨ

iT

Γ(q, v) +
∂Ψi

∂t
= 0.

For simplicity, from now on we will define ∇ΨiT

=

∇qΨ
iT

Γ(q, v).

Note that the term ∂Ψi

∂t is nonzero only for rheonomic
(time-dependent) constraints such as motors and im-
posed trajectories.

For each bilateral constraint, there exists a Lagrange
multiplier γi

B such that the force acting on the system
by the ith bilateral constraint is γi

B∇Ψi [20].

2.3. Unilateral contact constraints

Since rigid bodies cannot overlap each other, given
the set of body shapes Ω = {Ω1, Ω2, ..., Ωn}, we assume
that there exists a set of GP distance functions Φ(q, Ω)
that must satisfy the unilateral constraint conditions:

Φi(q, Ω) ≥ 0, i ∈ GP . (8)

An example of such a mapping is the signed distance
function [23].

For convenience, we pose the problem in terms of
contact points, since in most cases we can compute a
minimal set of contact normals belonging to one of two
neighboring bodies: distances Φ(q, Ω) are measured
along those normals.

For example, in the case of spherical bodies with
positions xj

s and radius rs, for all body pairs j, k the
signed distance function is Φ = ||xj

s−xk
s ||−2rs. Note,

however, that, for bodies with generic shapes, finding
a proper set of contact points (and defining their Φi

distance functions) is not always trivial [3,4]. In fact,
there could be multiple contact points, or it could even
happen that defining a differentiable signed distance
function is not possible, as in the case of concave shapes
[3].

Nevertheless, since we are interested in enforcing
non-penetration, what truly matters is that a signed
distance function be defined up to some value of the
penetration [4]. We thus assume that Φ(q, Ω) can be
differentiably defined at least on a neighborhood of the
set Φ(q, Ω) ≥ 0. Such an assumption does hold for
smooth and strictly convex bodies, such as spheres [3].

2 In the context of this work, bilateral constraints are always
considered scalar, because complex mechanical joints can be
modeled by using multiple basic scalar constraints. For exam-
ple, kinematic pairs such as a ball joint require three scalar
equations, a prismatic guide requires five scalar equations, and
so on.

In addition, piecewise smooth bodies can be accommo-
dated in a fixed-time-step framework, by decomposing
the distance function in components attached to each
pair of features, such as point and piecewise smooth
surface or curved edge and curved edge, and using all
normals attached to such pairs [19].

Also, we consider only a subset GA(q, Ω, ǫ) ⊂ GP

of all potential contacts, that is, only those contacts
whose surfaces are under a distance threshold ǫ:

GA(q, Ω, ǫ) =
{
i
∣∣ i ∈ GP , Φi(q, Ω) ≤ ǫ

}
. (9)

Special attention must be paid in implementing an
efficient and robust collision algorithm for the genera-
tion of the GA(q, Ω, ǫ) set of contact points.

A preliminary algorithm, called broad-phase colli-
sion detection, discards pairs of shapes that are farther
than ǫ, in order to avoid a combinatorial waste of time
if checking for collision points with all pairs of bodies.
We use the sweep and prune (SAP) algorithm to this
end [17].

The following narrow-phase step operates on the
pairs of bodies that passed the broad-phase check: it
finds the contact points and their normals. We adopt
the GJK algorithm for this purpose because it features
high efficiency and robustness even in the case of non-
smooth surfaces [16].

Concave shapes, if any, undergo an off-line conver-
sion into sets of convex shapes using a convex de-
composition algorithm; a middle-phase AABB binary-
tree traversal is used to check collisions between these
compounds of shapes without running into superlinear
time complexity.

A thin envelope is added around all shapes using
the Minkowski sums in order to allow a small amount
of interpenetration. If larger overlapping occurs, the
Expanding Polytope (EPA) algorithm is used [11].

2.4. Frictional constraints

In the following section we introduce friction by
means of conic constraints, which are an extension of
complementarity models discussed in [6,40].

2.4.1. The Coulomb friction model
The original Coulomb model introduces static µs

and kinetic µk friction coefficients as the only param-
eters to characterize the frictional phenomena at the
surface. Although simple, this model was proven to be
realistic and practical in many situations. Usually the
kinetic coefficient is slightly lower than the static coef-
ficient, but in this work we consider both to have the
same value µ.

If a position q is feasible and the contact is active,
that is, Φ(q, Ω) = 0, then at the contact we have a
normal force and a tangential force.

Let n be the normal at the contact pointing from
the second body to the first body, and let t1 and t2 be
the tangents at the contact. Here n, t1, t2 are mutually
orthogonal vectors of length one in three dimensions.
The vectors n, t1, and t2 are a function of the position
q, but we ignore this fact until the end of this section.
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The reaction force is impressed on the system by
means of multipliers γ̂n ≥ 0, γ̂u, and γ̂v. The normal
component of the force is F N = γ̂nn, and the tangen-
tial component of the force is F T = γ̂ut1 + γ̂vt2.

The Coulomb model consists of the following con-
straints:

γ̂n ≥ 0, Φ(q) ≥ 0, Φ(q)γ̂n = 0,

µγ̂n ≥
√

γ̂2
u + γ̂2

v , ||vT ||
(
µγ̂n −

√
γ̂2

u + γ̂2
v

)
= 0,

〈F T , vT 〉 = − ||F T || ||vT || ,
(10)

where vT is the relative tangential velocity at contact.
The effect of the friction over the dynamical system is
defined by the friction coefficient µ ∈ R

+, which typi-
cally has a value between 0 and 1 for most materials.

The first part of the constraint can be restated as

F = F N + F T = γ̂nn + γ̂ut1 + γ̂vt2 ∈ K,

where K is a cone in three dimensions, whose slope is
arctan(µ).

The constraint 〈F T ,vT 〉 = − ||F T || ||vT || requires
that the tangential force be opposite to the tangential
velocity. As a result, the reaction force is dissipative.
In fact, an equivalent convenient way of expressing this
constraint is by using the maximum dissipation prin-
ciple [40,38,39],

(γ̂u, γ̂v) = argmin√
γ̂2

u+γ̂2
v≤µγ̂n

(γ̂ut1 + γ̂vt2)
T

vT .

These constraints are represented by mapping the
vectors n, t1, t2 from contact coordinates to general-
ized coordinates [3].

We denote the generalized vector version of n, t1, t2
by Dn, Du, Dv.

In generalized coordinates, the Coulomb model be-
comes [8]

F N = γ̂nDn, F T = γ̂uDu + γ̂vDv, (11)

γ̂n ≥ 0, Φ(q) ≥ 0, γ̂nΦ(q) = 0, (12)

where the tangential multipliers γ̂u, γ̂v are determined
from the maximum dissipation principle

(γ̂u, γ̂v) = argmin√
γ̂2

u+γ̂2
v≤µγ̂n

(γ̂uDu + γ̂vDv)
T

v.

The last relation is obtained from the identities DT
u v =

tT
1 vT and DT

v v = tT
2 vT .

2.5. The Overall dynamical model

The other dynamical data needed for the model are
the mass matrix M(q), which is symmetric positive
definite; the external force fe(t, q, v); and the inertial
force fc(q, v), containing the centrifugal and Coriolis
forces.

We can define the total force

f t(t, q, v) = fe(t, q, v) + fc(q, v). (13)

Assume now that we have multiple contact con-
straints Φi(q, Ω) ≥ 0, i ∈ GA and multiple bilateral
constraints Ψi(q, t) = 0, i ∈ GB. Note that the unilat-
eral condition γ̂n ≥ 0, Φ ≥ 0, Φγ̂n = 0 can be written
as a complementarity constraint γ̂n ≥ 0 ⊥ Φ ≥ 0.

The continuous model is a differential variational
inequality [37]:

M(ql)
dv

dt
=
∑

i∈GA

(
γ̂i

nDi
n + γ̂i

uDi
u + γ̂i

vD
i
v

)
+

+
∑

i∈GB

γ̂i
B∇Ψi + f t(t, q, v)

q̇ = Γ(q, v)

Ψi(q, t) = 0 i ∈ GB

γ̂i
n ≥ 0 ⊥ Φi(q, Ω) ≥ 0, i ∈ GA

(
γ̂i

u, γ̂i
v

)
= argmin

µiγ̂i
n≥
√

(̂γi
u)2+(̂γi

v)2
i ∈ GA

vT
(
γ̂uDi

u + γ̂vDi
v

)
.

(14)
Unfortunately, the introduction of the Coulomb

friction model may lead to an inconsistent model. It
is known [9] that paradoxical configurations exist for
which such a model does not have a solution in terms
of unknown accelerations and reaction forces. Such
configurations are called Painlevé paradoxes [39]. Nev-
ertheless, a weaker formulation of the problem can be
solved in terms of vector measures, using a nonsmooth
time-stepping scheme where reaction impulses are the
unknowns at each time step [39].

To this end we define the following stepping scheme,
with time step h, known positions q(l), and velocity
v(l); the scheme is an equation problem with equi-
librium constraints, where the unknowns are q(l+1),
v(l+1), and constraint impulses γn = hγ̂n, γu = hγ̂u,
γv = hγ̂v, γB = hγ̂B:

M (l)(v(l+1) − vl) =
∑

i∈GA

(
γi

nDi
n + γi

uDi
u + γi

vD
i
v

)
+

+
∑

i∈GB

(
γi
B∇Ψi

)
+ hf t(t

(l), q(l), v(l))(15)

0 =
1

h
Ψi(q(l)) + ∇ΨiT

v(l+1) +
∂Ψi

∂t
, i ∈ GB(16)

0≤ 1

h
Φi(q(l)) + ∇ΦiT

v(l+1) (17)

⊥ γi
n ≥ 0, i ∈ GA(

γi
u, γi

v

)
= argmin

µiγi
n≥

√
(γi

u)2+(γi
v)2

i ∈ GA

[
vT (γuDi

u + γvD
i
v)
]

(18)

q(l+1) = Λ(q(l), v(l+1), h). (19)

To simplify notation, we denoted M(ql) by M (l).
In previous work, we have shown that the scheme is

convergent, as the time step h goes to 0, to the solution
of a measure differential inclusion [2].

For the special case of zero friction, the subproblem
simplifies to (15-17), that is, a linear complementarity
problem. Such problems can be solved by Lemke’s al-
gorithm [14,6]. Introducing the Coulomb friction (18),
however, turns the problem into a nonlinear comple-
mentarity problem that poses more difficulties. If the
nonlinear constraint cone (the Coulomb cone) is ap-
proximated by a piecewise linear cone, the subproblem
(15-18) becomes again an LCP solvable by Lemke’s al-
gorithm [6]. Nevertheless, in [5] we have also demon-
strated that, as the number of constraints in the prob-
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lem increases, the computational cost of typical LCP
solvers increases far faster than linearly with the size of
the problem. Moreover, the approximation of friction
cones by means of faceted pyramids would introduce
unwanted anisotropy.

To overcome these difficulties, we modified the time-
stepping scheme by relaxing the constraint (17) as

0 ≤ 1

h
Φi(q(l)) + ∇ΦiT

v(l+1)

−µi
√

(Di,T
u v)2 + (Di,T

v v)2 ⊥ γi
n ≥ 0, i ∈ GA.

(20)
This results in a cone complementarity problem that
can be solved with a fixed-point iteration approach, as
demonstrated in our earlier work [8].

2.6. Cone complementarity formulation

Developing the optimality conditions for the equi-
librium constraint in (18), we obtain that there exists
a Lagrange multiplier λi such that, for any i ∈ GA,

λiγi
u = −Di,T

u v, λiγi
v = −Di,T

v v,

λi ≥ 0 ⊥ µiγi
n −

√
(γi

u)
2

+ (γi
v)

2 ≥ 0.
(21)

The first two equations imply that λi
√

(γi
u)2+(γi

v)2=√
(D

i,T
u v)

2

+(D
i,T
v v)

2, while the complementarity con-
straint implies that

0 = λi

√
(γi

u)
2
+ (γi

v)
2

(
µiγi

n −
√

(γi
u)

2
+ (γi

v)
2

)

and, in turn, that

µiγi
n

√
(D

i,T
u v)

2

+(D
i,T
v v)

2 = λi
((

γi
u

)2
+
(
γi

v

)2)
.

(22)
We now define, for all potential contacts, the vectors

ui
A =

{
1

h
Φi(q(l)) + ∇ΦiT

v(l+1), Di,T
u v, Di,T

v v

}T

(23)

γi
A =

{
γi

n, γi
u, γi

v

}T
, i ∈ GA. (24)

We calculate the scalar product using (20),(21):

〈
ui
A, γi

A

〉
= γi

n

(
1

h
Φi + ∇ΦiT

v

)
+ γi

uDi,T
u v

+ γi
vDi,T

v v

= µiγi
n

√
(D

i,T
u v)2

+(D
i,T
v v)2

− λi
((

γi
u

)2
+
(
γi

v

)2)

= 0 ⇒ ui
A ⊥ γi

A. (25)

We recall that the dual cone of a convex cone K is
the set K∗ = {x|∀y ∈ K 〈y, x〉 ≥ 0} and that the polar
cone is defined as K◦ = −K∗.

We now define the friction cone FCi such that the
Coulomb friction model is satisfied if γi

A ∈ FCi:

FCi =
{

x, y, z ∈ R
3|µix ≥

√
y2 + z2

}
.

Then, from (18), (20), and (25), the frictional contact
constraints can be expressed by means of the following
cone complementarity constraints :

−ui
A ∈ FCi◦ ⊥ γi

A ∈ FCi, i ∈ GA. (26)

To obtain a unified formalism, we can represent also
the bilateral constraints (16) in terms of cone comple-
mentarity constraints. Of course, multipliers γi

B, with
i ∈ GB, are not restrained into some special subset of
R, but even R itself is a convex cone. Thus we can in-
troduce the scalar

ui
B =

1

h
Ψi(q(l)) + ∇ΨiT

v(l+1) +
∂Ψ

∂t
, i ∈ GB, (27)

which allows us to write the bilateral constraints (16)
as

−ui
B ∈ BCi◦ ⊥ γi

B ∈ BCi, i ∈ GB, (28)

where BCi = {R} and BCi◦ = {0}, and
〈
ui

b, γ
i
b

〉
= 0 is

always satisfied for −ui
B ∈ BCi◦.

We now define the vector

k̃
(l)

= M (l)v(l) + hf t(t
(l), q(l), v(l)). (29)

Then, equations (29), (28), and (26), together with
(15) and the definition of ui

A, γi
A, ui

B, and γi
B, result

in the following problem:

M (l)v(l+1) =
∑

i∈GA

(
γi

nDi
n + γi

uDi
u + γi

vDi
v

)
+

+
∑

i∈GB

(
γi
B∇Ψi

)
+ k̃

(l)
,

− ui
A ∈ FCi◦ ⊥ γi

A ∈ FCi, i ∈ GA

− ui
B ∈ BCi◦ ⊥ γi

B ∈ BCi, i ∈ GB.

(30)
If we want to obtain a cone complementarity

problem as expressed in the typical form −K◦ ∋
f(a) ⊥ a ∈ K, a more compact formulation of the
problem (30) is necessary. To this end we denote by
nA and nB the number of elements in the sets GA and
GB, respectively. Then, we define the following vectors
bA ∈ R

3nA , γA ∈ R
3nA , bB ∈ R

nB , and γB ∈ R
nB :

bA =

{
1

h
Φi1 , 0, 0,

1

h
Φi2 , 0, 0, . . . ,

1

h
ΦinA , 0, 0

}T

γA =
{
γi1

n , γi1
u , γi1

v , γi2
n , γi2

u , γi2
v , . . . , γ

inA
n , γ

inA
u , γ

inA
v

}T

bB =

{
1

h
Ψ1 +

∂Ψ1

∂t
,
1

h
Ψ2 +

∂Ψ2

∂t
, . . . ,

1

h
ΨnB +

∂ΨnB

∂t

}T

γB =
{
γ1
B, γ2

B, . . . , γnB

B

}T

uA =
{
u1T

A , u2T

A , . . . , u
n
AT

A

}T

, uB =
{
u1
B, u2

B, . . . , unB

B

}T
.

(31)
It is useful to merge these vectors, joining data from

both frictional constraints and bilateral constraints,
obtaining vectors with nE = 3nA+nB scalar elements:

bE =
{
bT
A, bT

B

}T

, γE =
{
γT
A, γT

B

}T
, uE =

{
uT
A, uT

B

}T
.

(32)
For each frictional contact i ∈ GA we also define the

following three-column matrix:

Di =
[
Di

n|Di
u|Di

v

]
. (33)

As before, it is useful to merge all Jacobians from
both frictional constraints and bilateral constraints in
a single, large matrix having nE columns and mv rows:

DE =
[
Di1 |Di2 | . . . |DinA |∇Ψ1|∇Ψ2| . . . |∇ΨnB

]
.

(34)
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From the definitions (23),(27), (31), (32), (33), and
(34) one can see that

uE = DT
E v(l+1) + bE . (35)

Also, premultiplying by M (l)−1
equation (15), one gets

v(l+1) = M (l)−1
DEγE + M (l)−1

k̃. (36)

Hence it is possible to substitute (36) into (35) to ob-
tain

uE = DT
E M (l)−1

DEγE + DT
E M (l)−1

k̃ + bE . (37)

To make the expressions more compact, we intro-
duce the following:

N = DT
E M (l)−1

DE (38)

r = DT
E M (l)−1

k̃ + bE (39)

In this way, we can write

uE = NγE + r. (40)

Consider the multidimensional cone obtained by
performing the direct sum of all FC and BC cones
and its embedding in the corresponding vector space
direct sums:

Υ =

(
⊕

i∈GA

FCi

)
⊕

(
⊕

i∈GB

BCi

)
. (41)

From (41), (40), (31), the complementarity relation-
ship in (30), and the property of convex cones [22], Υ =⊕

i Υi ⇒ Υ◦ =
⊕

i Υi,◦, we can write the problem as
a cone complementarity problem (CCP):

(NγE + r) ∈ −Υ◦ ⊥ γE ∈ Υ. (42)

The separable structure of the cone will allow us
to define an algorithm based on block matrices, with
relatively small blocks (dimension no larger than 3 in
the case of the contact problem).

2.7. Physical effects of the relaxation

In [2] we demonstrated that, for h → 0, the solu-
tion of the time-stepping scheme with the relaxed con-
straints (20) will approach the solution of the same
measure differential inclusion as the scheme that uses
the unrelaxed constraints (17). In addition, iterates
produced by the modified scheme approach the ones of
the original scheme even for one time step at fixed h,

provided that µiγi
n

√
(Di,T

u v)2 + (Di,T
v v)2 << 1, that

is, with either low friction or low tangential speed [5].
We note that this regime happens frequently in gran-
ular flow applications, such as in the simulation of the
refueling of pebble bed nuclear reactors [34] and dense
packing of granular matter. On the other hand, the
good behavior of our scheme occurs even beyond this
regime, for reasons we now explain.

Note that the Φ/h term achieves constraint stabi-
lization. When the term is positive and the constraint is
active, it biases the normal impulse to be smaller than
the one at exact contact and allows for “soft landing”
projection onto the contact manifold. When the term

is negative, it biases the normal impulse to be larger
than the one at exact contact and allows restoration
to the contact manifold. The square root term in (20),
which can be written also as µ||vi

T ||, does not appear in
the original model and, as discussed in [2], does result
in a larger value of the normal velocity. Therefore, it
could potentially produce a departure from the predic-
tion of the original model. As we discuss below, how-
ever, the constraint stabilization term substantially al-
leviates this effect. Indeed, the normal speed is vi

T =

∇ΦiT

v, so it follows that

Φi(q) = µi||vi
T ||h, vi

N = 0, (43)

satisfies the complementarity constraints (20) exactly.
Hence, a solution to (20) that involves the term µi||vi

T ||
need not result in an increase value of the normal ve-
locity as long as the gap Φi(q) is about µi||vi

T ||h. All
the meaningful simulations that we have carried out
indicate that this is indeed what happens, and thus the
solution approaches the solution of the original scheme
insofar as normal velocity. Hence, the model effectively
includes a separating boundary layer of size µi||vi

T ||h
that plays the role of zero-order effective compliance.
Smaller values of Φi(q) result in higher than steady-
state impulse, whereas larger values of Φi(q) result in
smaller than steady-state impulse, both of which push
the value of the gap function to the value µivi

T . This
effect is immediately seen for one contact, which leaves
from rest with zero tangential velocity or which lands
in an inelastic fashion. This is harder to prove for multi-
ple contacts, though it always held in our experiments.
There is one caveat, however, as shown in [2]. That
is, if one starts with Φi(q) << µivi

T h, then the nor-
mal component of the velocity is much larger than the
one predicted by the original scheme and then what
is needed to satisfy approximately (43) in a few steps,
so the contact suffers an artificial takeoff. This corre-
sponds to the only case in which we have seen our ar-
gument fail, the one of high initial tangential velocity
at a contact. Since this case occurs rarely in practice,
our relaxation approximates in most cases the solution
that would have been obtained by the original, unre-
laxed scheme.

3. The iterative method

To solve the CCP (42), we propose a fixed-point
iteration with the following form:

γr+1
E = λΠΥ

(
γr
E − ωBr

(
Nγr

E + r + Kr
(
γr+1
E − γr

E

)))
+

+ (1 − λ)γr
E ,

r = 0, 1, 2, . . . .

(44)
This iteration uses block matrices Br and Kr. Ma-

trix B is null except for blocks on the diagonal; in our
implementation blocks that correspond to the ith fric-
tional contact are scaled identity matrices Bi

A = ηi
AI,

Bi
A ∈ R

3, while blocks that correspond to the ith bi-
lateral constraint are scalars Bi

B = ηi
B, Bi

B ∈ R. Matrix
K is an upper or lower block matrix, with null blocks
on the diagonal corresponding to the blocks of B; in
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both cases the method is similar to a projected block
Gauss-Seidel. Another option is to use a null K ma-
trix, so that the method is similar to a projected block
Gauss-Jacobi.

Also, ΠΥ : R
nE 7→ R

nE is the orthogonal projection
operator, whose calculation, as we show in the subse-
quent sections, is considerably simplified by the sepa-
rable cone structure (41).

For convergence of the scheme we need the following
assumptions about the algorithm.

A1 The matrix N of the CCP problem is symmetric and
positive semi-definite.

A2 There exists a positive number, α > 0 such that, at
any iteration r, r = 0, 1, 2, . . ., we have that Br ≻
αI.

A3 There exists a positive number β > 0 such that,
at any iteration r, r = 0, 1, 2, . . ., we have that

(γr+1−γr)T
(
(λωBr)

−1
+ Kr − N

2

)
(γr+1−γr) ≥

β
∥∥γr+1 − γr

∥∥2
.

Note that the first assumption is always assured in
multibody systems because the mass matrix is definite
positive, Br and α are under our control for satisfying
the second assumption, and it is always possible to
adjust the free ω and λ parameters in order to satisfy
the third assumption. Our main convergence result [8,
Corollary 1] is given in Theorem 1.

Theorem 1 Assume that

0 6= γE ∈ Υ ⇒ NγE 6= 0

(that is, there does not exist a choice of reaction forces
whose net effect is zero; bodies do not get “stuck”).
Then the algorithm (44) for the cone complementarity
problem applied to (42) produces a bounded sequence,
and any accumulation point results in the same velocity
solution.

We note that, even if in [8] we have demonstrated the
use of our algorithm for contacts only, Theorem 1 ap-
plies to the bilateral case as well. Nevertheless, the key
observation is that we consider the bilateral constraints
as linearized constraints for which we develop the addi-
tional algorithmic machinery in this paper. The direct
application of the formulation in [8], by formulating a
bilateral constraint as two unilateral constraints will
violate the main assumption in Theorem 1. Therefore,
we had to show that direct treatment of bilateral con-
traints will result in the same formal abstraction (42).

3.1. Efficient computation of the projection onto the
friction cone

Because of the separable cone structure of the convex
subspace Υ ΠΥ, the metric projection R

nE → R
nE is

ΠΥ =
{
ΠFC1(γ1

A)T , ΠFC2(γ2
A)T , . . . , ΠFCnA (γnA

A )T ,

ΠBC1(γ2
B)T , ΠBC2(γ2

B)T , . . . ΠBCnB (γnB

B )T
}T

,

where ΠFCi(·) : R
3 → R

3 with i ∈ GA, and ΠBCi(·) :
R → R with i ∈ GB . The projection operator must
behave as ΠΥ(γ) = argminζ∈Υ||γ − ζ|| in order to be

FC
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 ΠFC(γγγγA) 

Ψ

nnnn
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i oooo            

Fig. 2. A single friction cone and its dual cone, with examples
of projections.

globally nonexpansive for projection on convex sub-
space Υi.

For the multipliers introduced by friction con-
straints, it is enough to introduce a straightforward
mapping ΠFCi(·) : R

3 → R
3 to be applied multiple

times on all the triplets of contact multipliers γi
A, i ∈

GA. In Fig. 2 three subcases are detected:
– when γi

A is inside FCi, the vector is left untouched;

– when γi
A is inside the FCio

polar cone, it maps to
the origin {0, 0, 0};

– when γi
A is projected to the nearest point on the

FCi cone.
Introducing γr =

√
γ2

u + γ2
v , applying Pythagoras’s

theoremon triangle OCA, and using similarity between
triangles OCA and OCD, we easily get

Πn =
γrµ + γn

µ2 + 1
, Πr = µΠn , Πu = γu

Πr

γr
,

Πv = γv
Πr

γr
.

(45)
One can verify that, ∀i ∈ GA, such a mapping ex-

hibits ||ΠFCi(a) − ΠFCi(b)|| ≤ ||a − b||; hence the
nonextensibility property holds.

Including also the case of bilateral constraints B, the
projection operator becomes
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ΠΥ






∀i ∈ GB ΠBCi = γi
B

∀i ∈ GA

γr < µiγn ΠFCi = γi
A

γr < − 1

µi
γn ΠFCi = {0, 0, 0}T

γr > µiγn, γr > − 1

µi
γn ΠFCi

n
=

γrµi + γn

µ2
i + 1

ΠFCi
u

= γu

µiΠFCi
n

γr

ΠFCi
v

= γv

µiΠFCi
n

γr
.

(46)

4. Implementation

The CCP method proposed here can be applied to
the simulation of multibody systems with a large num-
ber of parts and contacts because, where an upper limit
on the number of iteration is enforced, the iteration
(44) can run in O(n) space and O(n) time.

Previous sections showed that generic multibody
problems with frictional contacts, expressed with the
system (15)–(19), embed the cone complementarity
problem (42), which can be solved by the iterative
method (44).

Given (31), one can consider the final time-stepping
scheme as a sequence of three main operations: a CCP
problem that finds unknown reactions γE (47a), an
affine scaling (47b) that gives the new speeds v(l+1),
and a position update (47c):

(NγE + r) ∈ −Υo ⊥ γE ∈ Υ (47a)

v(l+1) = M−1
(
k̃ + DEγE

)
(47b)

q(l+1) = Λ(q(l), v(l+1), h). (47c)

The biggest computational overhead is caused by
the first problem, that is, the CCP (47a). In fact, (47c)
is immediate, and (47b) can be computed quickly be-
cause in most cases the matrix M is diagonal and its
inverse M−1 can be precomputed easily.

The convergence theory about the iterative scheme
(44) leaves some degrees of freedom in choosing ηi

A, ηi
B

values that build the diagonal blocks of the iteration
matrix B. A trivial choice could be to use the same
ηi
A = ηi

B = ξ value for all diagonal blocks, that is,
B = ξI, and then use the overrelaxation parameter
ω to control the convergence. However, this may slow
convergence in systems with large mass ratios, even
with an optimal ω. A more practical approach, which
copes better with systems affected by uneven masses, is
inspired by the Gauss-Jacobi idea of using the inverse
of the diagonal of the system matrix N , so we use ηi

B =
1

∇Ψi,T M−1∇Ψi and ηi
A = 1

ḡi
, where ḡi is the average of

the diagonal values of the ith block of the N matrix.
We note that ḡi can be computed easily from the trace
of the 3 × 3 matrix Di,T M−1Di, as

ḡi =
Trace(Di,T M−1Di)

3
. (48)

We recall that the matrix N is a product of large
matrices; N = DT

E M−1DE , and it is full even if D
and M are sparse. For systems with a large number of
contacts, the size of N would be prohibitive and clearly
would not satisfy the goal of O(n) space complexity. To
this end, direct multiplication of vectors and matrices
in (44) must be avoided; otherwise the effort and the
space requirement would be superlinear in the number
of constraint.

For the reasons above, a scheme that does not need
the explicit building of N , B, and K has been devel-
oped, exploiting the sparsity of M and D.

The K matrix in (44) can be chosen freely, within
the convergence limits posed by assumptions [A1]–
[A3]. Among the most noticeable options, we have the
case K = 0, which results in a scheme like a projected
Gauss-Jacobi, or the case where K is built by using
the lower blocks of N .

4.1. Optimized projected Gauss-Jacobi CCP

Considering the case K = 0, and recalling Eq. (38),
we can express the rth step of the iteration (44) as an
inner loop with index i = 1 . . . nA on all nA friction
cones FCi:

δ
i,r+1
A = γ

i,r
A − ωηi

A

(
Di,T M−1

(
nA∑

z=1

Dzγ
z,r
A +

+

nB∑

z=1

∇Ψzγz,r
B + k̃

)
+ bi

A

)
(49)

γ
i,r+1
A = λΠFCi

(
δ

i,r+1
A

)
+ (1 − λ)γi,r

A , (50)

followed by an inner loop with index i = 1 . . . nB on
all nB bilateral constraints (which we do not report
because it is like (49)-(50) except for B instead of A

subscripts).
However, for each iteration, the previous loop i =

1 . . . nA would require quadratic time in terms of po-
tential contacts nA because of the presence of the sum-
mations

∑nA

z=1. This major source of slow performance
can be eliminated if one computes the algorithm in in-
cremental form. In fact, from (36) it follows that

vr = M−1

(
nA∑

z=1

Dzγ
z,r
A +

nB∑

z=1

∇Ψzγz,r
B + k̃

)
. (51)

Substituting (51) into (49), we can write

δ
i,r+1
A = γ

i,r
A − ωηi

A

(
Di,T vr + bi

A.
)

(52)

Considering the optimizations above, we can express
the final CCP algorithm with the pseudocode of Algo-
rithm 1.

In the proposed algorithm, for achieving high per-
formance, some auxiliary data can be precomputed be-
fore starting the iteration. Specifically, we introduce
the mv ×3 matrix Ei

A = M−1Di and the vector Ei
B =

M−1∇Ψi.
The iterations, usually stopped when an approxi-

mation threshold has been reached, can be also pre-
maturely aborted when r exceeds a limit rmax on the
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Algorithm 1: Solve complementarity - PGJ CCP
(1) // Pre-compute some data for friction constraints
(2) for i := 1 to nA

(3) Ei
A

= M−1Di

(4) ηi
A

= 3
Trace(Di,T Ei

A
)

(5) // Pre-compute some data for bilateral constraints
(6) for i := 1 to nB

(7) Ei
B

= M−1
∇Ψ

i

(8) ηi
B

= 1
∇Ψi,T Ei

B

(9)
(10) // Initialize impulses
(11) if warm start with initial guess γ∗

E

(12) γ0
E

= γ∗
E

(13) else

(14) γ0
E

= 0

(15)
(16) // Initialize speeds
(17) v0 =

∑nA

i=1
Ei

A
γ

i,0
A

+
∑nB

i=1
Ei

B
γ

i,0
B

+ M−1k̃

(18)
(19) // Main iteration loop
(20) for r := 0 to rmax

(21) // Loop on frictional constraints
(22) for i := 1 to nA

(23) δ
i,r+1
A

=
(
γ

i,r

A
− ωηi

A

(
Di,T vr + bi

A

))
;

(24) γ
i,r+1
A

= λΠΥ

(
δ

i,r+1
A

)
+ (1 − λ)γi,r

A
;

(25) // Loop on bilateral constraints
(26) for i := 1 to nB

(27) δ
i,r+1
B

=
(
γ

i,r

B
− ωηi

B

(
∇Ψ

i,T vr + bi
B

))
;

(28) γ
i,r+1
B

= λΠΥ

(
δ
i,r+1
B

)
+ (1 − λ)γi,r

B
;

(29) // Update speeds
(30) vr+1 =

∑nA

i=1
Ei

A
γ

i,r+1
A

+
∑nB

i=1
Ei

B
γ

i,r+1
B

+

M−1k̃

(31)
(32) return γE , v

maximum number of iterations if the simulation must
meet hard-real-time requirements.

With minimal modifications to the ΠΥ(·) operator,
the proposed method can be easily adapted to the case
of friction in 2D or the case of generic unilateral con-
straints.

In our simulations, we chose ω = 1 and λ = 1, except
for the K = 0 case, where we used ω = 0.2. We cannot
guarantee a priori that this will satisfy condition [A3],
but it did for all our simulations. In addition, the ma-
trix sequences Kr and Br were constant. We can there-
fore claim that Theorem 1 does apply and, since the
sequence did not diverge, any accumulation point is a
solution of the cone complementarity problem (47a).
In addition, our proofs of the theoretical results allow
for similar conclusions if ω varies from iteration to it-
eration. Therefore, we could ensure that at some iter-
ation the appropriate ω is chosen after decreasing its
value a few times until assumption [A3] holds. It can
be shown that if the value of ω is halved each time [A3]
does not hold and the respective iteration is rejected,
then [A3] will eventually be satisfied after a finite num-
ber of steps. In our experiments, however, the values
we have chosen for ω and λ have worked for all itera-
tions without need of further adjustment.

4.2. Optimized projected Gauss-Seidel CCP

Another option is to take K as the lower block struc-
ture of N , which results in a scheme similar to a pro-

Algorithm 2: Solve complementarity - PGS CCP
(1) // Pre-compute some data for friction constraints
(2) for i := 1 to nA

(3) Ei
A

= M−1Di

(4) ηi
A

= 3
Trace(Di,T Ei

A
)

(5) // Pre-compute some data for bilateral constraints
(6) for i := 1 to nB

(7) Ei
B

= M−1
∇Ψ

i

(8) ηi
B

= 1
∇Ψi,T Ei

B

(9)
(10) // Initialize impulses
(11) if warm start with initial guess γ∗

E

(12) γ0
E

= γ∗
E

(13) else

(14) γ0
E

= 0

(15)
(16) // Initialize speeds
(17) v =

∑nA

i=1
Ei

A
γ

i,0
A

+
∑nB

i=1
Ei

B
γ

i,0
B

+ M−1k̃

(18)
(19) // Main iteration loop
(20) for r := 0 to rmax

(21) // Loop on frictional constraints
(22) for i := 1 to nA

(23) δ
i,r+1
A

=
(
γ

i,r

A
− ωηi

A

(
Di,T vr + bi

A

))
;

(24) γ
i,r+1
A

= λΠΥ

(
δ

i,r+1
A

)
+ (1 − λ)γi,r

A
;

(25) ∆γ
i,r+1
A

= γ
i,r+1
A

− γ
i,r

A
;

(26) v := v + Ei
A

∆γ
i,r+1
A

.
(27) // Loop on bilateral constraints
(28) for i := 1 to nB

(29) δ
i,r+1
B

=
(
γ

i,r

B
− ωηi

B

(
∇Ψ

i,T vr + bi
B

))
;

(30) γ
i,r+1
B

= λΠΥ

(
δ
i,r+1
B

)
+ (1 − λ)γi,r

B
;

(31) ∆γ
i,r+1
B

= γ
i,r+1
B

− γ
i,r

B
;

(32) v := v + Ei
B
∆γ

i,r+1
B

.
(33)
(34) return γE , v

jected Gauss-Seidel. The K matrix does not need to be
explicitly built: its effect is that, as soon as computed,
a reaction impulse γi will be used also for computing
the following γi+1 impulse, and so on for all i, without
needing to finish a single iteration. In practical terms
this means that the

∑nA

z=1 Dzγ
z,r
A term in Eqs. (49) and

(51) is split in
∑i−1

z=1 Dzγ
z,r+1
A +

∑nA

z=i Dzγ
z,r
A , and the

same for bilateral constraints; so the difference from
Algorithm 1 is that after the update of a single multi-
plier we immediately update v(l+1), as shown in Algo-
rithm 2. Note that, to update the speeds, we avoid the
full summation (36) and add only the contributions
caused by the change of the single multiplier after the
projection (50):

∆γ
i,r+1
A = γ

i,r+1
A − γ

i,r
A ; (53)

v(l+1),i+1 = v(l+1),i + M−1Di∆γ
i,r+1
A . (54)

Hence, the computational overhead is not different
from Algorithm 1.

Numerical tests show that this scheme converges
faster than the case of K = 0; moreover, K = 0 is
more prone to slow convergence in case of redundant
constraints. 3

3 Redundancy in constraints is frequent in simulations of de-
generate contact situations, such as flat surface against flat sur-
face, where the collision engine may create a large amount of
superfluous contact points.
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 ∇ΨΨΨΨ
i,T

=  

 E E E E i,T=  

 b    i=     
B

   
    η    i=   γ   i=     

B

   
      

B

   
   

   
B

   
   

 ∇ΨΨΨΨ
i,T  { A  ∇ΨΨΨΨ

i,T  { B

Pointer to rigid body A

Pointer to rigid body B

i-th bilateral constraint 

 Di,T
=  

 E    i,T=     
A

   
   

 bbbb    i=     
A

   
    η    i=   γγγγ    i=     

A

   
      

A

   
   

 µ    i=  Pointer to rigid body A

Pointer to rigid body B

i-th frictional contact  

 M    j=   f f f f j=   v v v v j=  
 x x x x j  

 ωωωω         j  

....

l

{
{

j-th rigid body

Fig. 3. Sparse data structures used by the solver.

5. Optimizations and improvements to the

method

The proposed method can be further developed
by introducing some algorithmic and theoretical im-
provements, obtaining different flavours of the original
scheme. This section discusses the most significant
optimizations.

5.1. Transient data structures

Figure 3 shows how the multibody model is repre-
sented by structures that are placed in memory. This
transient data can be allocated on the heap during
run-time, creating lists with unlimited numbers of con-
straints and rigid bodies.

Basically, each object that builds up the lists of bi-
lateral constraints encapsulates the pointers to the two
connected bodies, the Lagrange multiplier γi

B , the con-
straint residual bi

B, the scalar value ηi
B, and the Jaco-

bian ∇Ψi.
The Jacobian should be a long row with mv ele-

ments, but this would mean that the storage require-
ment for each constraint depends on the number of
bodies, hence leading to an algorithm with superlin-
ear space complexity. Instead, we store only the two
small portions of ∇Ψi that are not null, that is, the
two parts ∇Ψi

A and ∇Ψi
B corresponding to the two

connected bodies, hence requiring only a fixed num-
ber of 12 elements per Jacobian. When the ∇Ψi,T vr

multiplication must be performed, it is computed as
∇Ψ

i,T
A vr

A +∇Ψ
i,T
B vr

B . Similar considerations apply to
the data structure for frictional contacts, except that
also µi coefficients must be stored and that Jacobians
are made of two larger blocks, each with three rows.
Thanks to this major optimization, the memory re-
quirement per constraint and per contact is constant,

so we obtain an optimal O(nE ) space complexity. 4

Looking at Algorithms 1 and 2, one can see that the
solver can operate directly on these structures. Hence,
no temporary matrices are necessary. Our method is
thus a matrix-free method.

5.2. Stabilization factor

The stabilization terms 1
hΨi(q(l)) and 1

hΦi(q(l)) in
(16) and (17) are used to avoid constraint drifting dur-
ing the time integration [4]. In fact, if these terms were
missing, equations (16) and (17) would simply enforce
the closure of constraints at the speed level, but errors
might slowly accumulate in constraint positions after
several integration steps. 5 .

If the model were linear (that is, the matrix DE were
constant in space, and, implicitly, in time), these terms
would close constraint gaps, if any, in a single step.
We experienced that, for bilateral constraints, this ap-
proach works well even if the time integration step h is
small. However, this is not always the case when deal-
ing with unilateral constraints, for the reason that fol-
lows. Because of numerical issues and nonlinearities,
it is not possible to avoid some amount of penetration
in contact constraints. For a contact with penetration,
the term 1

hΦi(q(l)) has a negative value. Hence, the in-

equality (17) requires that ∇Φiv(l+1) (the speed of de-
tachment of the contact) be large enough to bring the
two surfaces at zero distance in a single step h. After
the time integration step, at the next step the two sur-
faces might keep the 1

hΦi(q(l)) separation speed, hence
causing a bouncy behavior. Apart from being not pre-
dictable, this side effect gets worse if small timesteps
h are used, because even the smallest interpenetration
might cause macroscopic effects that can be perceived
as bouncy motions even in contacts that should have
no restitution.

We investigated different strategies to improve the
original stabilization method. One idea was to scale
the terms by Ki factors, with 0 < Ki < 1:

Ki

h
Ψi(q(l)) ,

Ki

h
Φi(q(l)).

This diminishes, but does not exclude, the risk of ex-
ceeding the interpenetration correction in a single step.
Moreover, it has the drawback of creating artificial soft-
ness in stacked objects, since contact stabilization is
somewhat delayed in successive frames.

A second approach, which we successfully used in
many tests, involves using a clamping A as the maxi-
mum orthogonal speed for penetration recovery. This
does not eliminate the risk of popping out from an in-
tersecting contact, but at least the residual speed of
separation, if any, is often negligible (comparable with

4 We experienced that in many cases of granular flow simula-
tions, the number of contacts tends to scale linearly with the
number of rigid bodies n. Hence, under those circumstances
the algorithm shows approximate linear space complexity O(n)
also in the number of bodies.
5 This would happen either because of the numerical integra-
tion, whose finite precision cannot catch all geometric nonlin-
earities, or because of numerical truncation and errors.
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the parameter A, which can be adjusted by the user)
and independent of the time step h. Thus, the stabi-
lization terms would become

1

h
Ψi(q(l)) , max

(
1

h
Φi(q(l)),−A

)
.

Note that in this case, if the contact surfaces are sep-
arated, we have Φi > 0 and the A clamping has no
effect; thus it behaves as the original scheme with the
1
hΦi(q(l)) term.

Until now we discussed how the stabilization term
can correct the contact penetration errors when the
surface distance is negative. However, it also has a use-
ful side effect also when surfaces are not yet in con-
tact. In fact, Eq. (17) can be interpreted as follows: the
contact constraint is enforced only if the two surfaces
are approaching fast enough to close the positive gap
Φi(q(l)) in a h time step. This allows us to include in
the multibody system also contact constraints that are
not yet in contact but simply within a “warning enve-
lope”; later, the cone complementarity solver will do
the rest.

The third approach is more expensive in terms of
CPU effort, because it avoids constraint drifting by
solving an additional complementarity problem over
body positions, at each time step [12]. In this case, one
solves the speed CCP problem using no stabilization
terms on bilateral constraints, except for contacts that
are not yet in contact, where it is useful to have

max

(
1

h
Φi(q(l)), 0

)
,

so that contacts with clearance are still allowed to ap-
proach until contact, because of positive 1

hΦi, while
surfaces already in contact are forced to have a separa-
tion speed greater than or equal to 0, regardless of the
amount of penetration. Later, after the time step ad-
vancement, one performs the following poststabiliza-
tion step, that is a a linear complementarity problem
that corrects the positions q:

M∆q =
∑

i∈GA

(
βi

nDi
n

)
+
∑

i∈GB

(
βi

b∇Ψi
)

(55)

0 = Ψi(q(l)) + ∇ΨiT

∆q, i ∈ GB (56)

0≤Φi(q(l)) + ∇ΦiT

∆q ⊥ βi
n ≥ 0, i ∈ GA(57)

This problem can be solved by using the same solver
used for the speed CCP problem. The poststabilization
idea performs better in the case of very large penetra-
tions and ill-posed initial conditions.

In Fig. 4 a benchmark shows that the effort in reduc-
ing the maximum penetration error ||ǫq||∞ with post-
stabilization iterations is almost the same as that of
the basic approach using only the stabilization coeffi-
cient in the speed CCP. However some iterations on
the speed CCP still must be performed. For instance,
in our complex simulations involving dense granular
flow, the number of iterations of the poststabilization
is comparable to the number of iterations for the speed
CCP, so computational efforts are almost doubled.

A family of methods can be generated by balancing
the total overhead toward the speed CCP iterations
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Fig. 4. Penetration error: tradeoff between speed iterations
and poststabilization iterations, compared to WU overhead
(GPU working units).

or the poststabilization iterations. In the extreme case
where no iterations for the speed CCP are performed
and iterations are performed only for the poststabi-
lization, this method becomes similar to the position
based dynamics algorithm, proposed in [27] as a robust
method for real-time simulations.

Note that in this section we did not discuss the case
of collisions with restitution and we assumed the sim-
ulation of contacts with fully plastic collisions. The
reader interested in modifications to the method, for
simulating also of the restitution phase, can read [1].

5.3. Parallelization of the algorithm

Algorithm 2 is inherently sequential, so Algorithm 1
can be easier to implement on computational architec-
tures exploiting parallel processing because it does not
feature data dependency for most of the inner loop.

In Algorithm 1, loops at rows 23 and 27 can be easily
executed in parallel because they do not need to write
at the same memory address at the same time. In the
best scenario, one could run up to nA+nB independent
threads, each performing an update of its multiplier γ.

However, the sums at row 30 are more critical if par-
allelized in the same way, that is, on the basis of a
thread per contact, since there is the risk that multi-
ple threads will need to update the same element of
the speed vector at the same time (this situation hap-
pens, for instance, if two contacts that refer to the same
body are processed simultaneously). This problem can
be solved in many ways, for example, by using a vec-
tor of Boolean mutexes, one per rigid body, which can
prevent one thread to modify the speed of a rigid body
if some other thread is writing into it. Otherwise, if the
number of physical threads is very large as in GPU ar-
chitectures, it is worth performing the sums in 30 using
parallel-reduction algorithms.

We implemented this parallel algorithm on both a
multicore processor and on an NVIDIA Tesla C870
GPU board featuring a massively multithreaded archi-
tecture, thanks to a stream processor that is capable of
processing hundreds of threads in parallel. In the lat-
ter case, we experienced a speedup of 15 times respect
to the serial implementation [44].
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6. Examples

We present two benchmarks that we used to test the
performance of our algorithm and an application to
the simulation of the refueling of a nuclear reactor.

6.1. Forklift truck simulator

As a complex mechanical system, a forklift truck
represents a significative benchmark for our algorithm
because it entails most aspects that we discussed in
this article: rigid bodies, bilateral constraints, applied
forces, and unilateral contact constraints with friction.
In detail, our truck model is made of seven rigid bodies
(the frame, three wheels, the steering strut, the mast,
the carriage with the forks) connected by six revolute
and prismatic joints. The tilting of the mast, the lifting
of the carriage, and the steering are obtained by intro-
ducing rheonomic bilateral constraints. This is a sim-
plified approach, but more detailed models of the ac-
tuators, with hydraulic components and feedback con-
trollers, are also possible within this framework. Mo-
tors and brakes provide torques to the wheels; motors,
brakes, and actuators can be controlled in real time by
the user, using a joystick or a keyboard, or by using
automatic procedures.

In order to also test frictional constraints, a seventh
rigid body is added: a wooden pallet of EUR/ISO1
type: the truck can pick and move such a pallet with
the forks. Specific collision shapes have been defined to
detect the contact points between the pallets, the en-
vironment, and the truck. Collision shapes have been
used also for frame of the forklift and its overhead
guard, so that we can simulate the roll-over of the ve-
hicle and other hazardous events.

On our test system, a dual-core Centrino T2600 2.17
GHz with 2 GB of RAM, the proposed algorithm is able
to simulate the truck in faster than real time, using a
fixed timestep h = 0.005 s.

To assess the efficiency and capability of our matrix-
less approach, we simulated an increasing number of
forklift trucks, up to 1,600 vehicles with 1,600 pal-
lets, see Fig.5. In the largest simulation scenario, with
12,800 rigid bodies, the algorithm must handle 54,400
bilateral constraints and, on average, 19,000 frictional
contacts: this means more than 110,000 primal and
dual variables.

We used Algorithm 1 with a limit of 20 iterations.
Table 1, averaged over 100 steps, shows that the CPU
overhead grows almost linearly with the number of dual
variables 3nA + nB, that is, somehow proportional to
the number of bodies.

Note that the frame rate in the case of hundreds of
trucks, although not real time as for few trucks, is still
fast and interactive.

Increasing the number of iterations results in an im-
provement of the precision: going from 20 iterations to
80 iterations, the largest errors in constraint position
and in constraint velocity decrease, respectively, from
0.0310 mm and 0.024 m/s to 0.006 mm and 0.002 m/s.
These results about precision are not dependent on

Table 1
Time-step performance.

No. of Trucks CCP Solve [ms] Collision [ms] Bodies 3nA + nB

1 0.22 0.1 8 70

400 135 39 3200 28000

800 268 79 6400 56000

1200 396 130 9600 84000

1600 550 200 12800 112000

the number of trucks, because the convergence of the
solver is not affected by the increasing complexity of
this type of benchmark, where the dynamics of each
vehicle is uncoupled. On the other hand, our results in-
dicate the efficiency of our algorithms, which is due to
our customization to rigid-body dynamics structure.
For example, the most efficient off-the-shelf algorithms
in [32], which are either of either the interior-point or
the projected gradient type, still need around 20 s per
time step for about 10,000 dual variables. Those algo-
rithms solve the same problem as here. If linear scaling
would hold for those methods – a big assumption in
their favor – our algorithm will still be more than 100
times faster.

How precision and convergence can be affected by
systems with more stringent topology is investigated
in the following example.

6.2. Dense granular packing benchmark

Dense stacking of granular material is one of the
hardest problems involving nonsmooth rigid body dy-
namics. Indeed, the benchmark described in this sec-
tion involves the simulation of the progressive stacking
of many convex shapes in an empty box, with different
settings.

The rigid bodies have a mass m = 10 kg, the mo-
ments of inertia are Ixx = Iyy = Izz = 10.24 kgm2,
and the friction coefficient is µ = 0.4. The horizontal
section of the box measures 20 m×20 m. We performed
tests with different types of colliding shapes, but for
the graphs presented here we used spheres with a ra-
dius r = 1.6 m. At the beginning of the simulation the
box is filled by 220 spheres, with randomized positions
and with an initial volume fraction of 0.4, on average.
After the spheres have settled, we obtained the plots.

Figures 6 and 7 show a typical convergence pattern
of the PGS CCP algorithm: ǫv is the violation of the
constraints at the speed level. For increasing ω, the iter-
ation shows a faster convergence. However, large ω val-
ues may lead to nonmonotonic behavior (that does not
necessarily lead to divergence). We found that a good
tradeoff between convergence speed and a monotonic
nondivergent iteration, for scenarios involving equally
sized spheres, is ω = 1.

Figure 8 shows that the λ parameter acts like a
smooting factor over the iteration. The higher the pa-
rameter the slower is the convergence, but the lower
is the risk of nonmonotonic or divergent patterns. The
optimal value depends on the type of simulation; we
experienced that, on average, good default values can
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Fig. 5. Benchmark: simulation of thousands of forklifts.
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Fig. 6. Convergence of the residual for varying ω, for a sample
time step in the 220-sphere benchmark.
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Fig. 11. Penetration error: combined effect of time step and
number of iterations during the benchmark.

be chosen in the range λ = 0.8 ÷ 1.0.
The convergence can be largely affected by the topol-

ogy of the mechanical system; the best-case scenario
being many single objects on a flat plane, and the worst

case being the objects stacked in a vertical row. This is
shown in Fig. 9, where we performed simulations with
the same number of spheres but with different sizes of
boxes. The precision of the iteration, for a fixed number
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Fig. 12. Simulation of bidisperse granular flow in a PBR nu-
clear reactor (170,000 bodies). The inner column of graphite
pebbles shows almost no dispersion in the surrounding fissile
material.

of iterations, deteriorates proportionally to the height
of the stack.

Figure 10 shows that, for low ω, the convergence of
the PGJ CCP algorithm is comparable to the conver-
gence of the PGS CCP algorithm. However the PGJ
CCP method is more likely to run into divergence, es-
pecially in the case of redundant constraints. There-
fore, it should be used with low ω, for example ω = 0.2
in this case.

In Fig. 11 we show the results of various simula-
tions with different time steps and iteration numbers,
while monitoring the average penetration error in con-
straints, ǫp. The figure shows that a good precision in
satisfying the constraints at the position level can be
achieved both by increasing the number of iterations
and by decreasing the time step h.

These plots are obtained for a sample time step,
after 5 seconds from the beginning of the granular
stacking simulation. Hence, previous time steps and
different scenarios can lead to slightly different graphs.
Although this is only a numerical benchmark, it is
a worst-case scenario, and its results are indicative
about the behavior of the solution method when deal-
ing with practical engineering problems that share the
same theoretical difficulties (masonry stability, soil
compaction, etc.).

6.3. Refueling cycle in a pebble bed nuclear reactor

A significant application, which may benefit from
the robustness and the speed of the method, is the sim-
ulation of the granular flow in the pebble bed nuclear
reactor PBR [18].

The PBR reactor features a fourth-generation design
based on a slow recirculation of fuel pebbles in a large

silo: actinides are coated and packed with graphite
moderator in the spherical pebbles, each with a typi-
cal diameter of 60 mm, while the helium coolant flows
between the pebbles. To increase the efficiency, a cen-
tral column of spheres could contain only graphite, to
flatten the neutron flux. Spheres are slowly extracted
from the bottom, reprocessed, and reinserted at the
top. The simulation of the downward granular flow
can be useful in estimating statistical parameters such
as the void fraction or the dispersion of the vertical
column, hence guiding more efficient designs that can
maximize the burnup of the actinides. A past attempt
at simulating a PBR reactor required one week on a
64-processor supercomputer at Sandia National Lab-
oratories, using the discrete element method (DEM)
[34]. Unlike DEM methods, our approach does not in-
troduce stiff force fields, and larger time steps are al-
lowed, so we could perform the simulation on a single
laptop computer in few hours. On average, this prob-
lem involved 170,000 rigid bodies, more than 500,000
frictional contacts, leading to more than two millions
of primal and dual variables (Fig. 12).

In [42] we presented results of these simulations and
validation against experimental data. Because of the
high stack of spheres, this example falls in the class of
problems with slow convergence already discussed in
the previous benchmark: this advocates for future re-
search efforts that could improve the performance of
the solver by leveraging on multiscale and domain de-
composition implementations. Nevertheless, we point
out that even under this circumstance we have shown
in [42] that we correctly compute macroscopic param-
eters of the granular flow in the pebble bed reactor,
such as porosity, while needing only a few hours on a
laptop.

7. Conclusions

We presented a formulation for multibody systems
with large amounts of bilateral constraints and fric-
tional contacts, and we developed an iterative method
for this purpose. Our approach poses the problem as a
convex optimization that can be solved as a cone com-
plementarity problem. The proposed fixed-point iter-
ation has been tailored to feature high performance
even in large simulation scenarios: special care has
been devoted in optimizing algorithms and formulas
and avoiding matrix storage, hence obtaining an O(n)
space complexity.

The method converges under standard assumptions
on the configuration of the system, resulting in a robust
algorithm that can simulate systems with millions of
multipliers.

Improvements have been presented for the stabi-
lization of contact constraints, resulting in matrix-free
schemes that can correct large interpenetrations of
rigid bodies without running into numerical problems.

We implemented a multibody system based on the
method presented in this paper: the Chrono::Engine li-
brary [41]. Aiming at high performance, we expanded
substantial efforts optimizing the C++ source code.
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This software has been already used to simulate com-
plex systems that were hardly tractable with other ap-
plications: granular flows in silos, interaction of wheels
with sand and pebbles, size segregation devices, and
other problems with a large number of bodies.

The method has been recently ported also on parallel
stream-kernel GPU hardware, obtaining a remarkable
computational efficiency [44].
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