
GIMC_2002
Third Joint Conference of Italian Group of Computational Mechanics and

Ibero-Latin America Association of Computational Methods in Engineering

SLIDING CONTACT BETWEEN FREEFORM SURFACES
IN THREE-DIMENSIONAL SPACE

P. RIGHETTINI, A. TASORA

Dipartimento di Ingegneria Elettrotecnica, Politecnico di Milano
tasora@mech.polimi.it

SOMMARIO
Si propone un approccio originale per l’introduzione del vincolo di contatto fra superfici
di curvatura arbitraria soggette a movimento relativo. Le equazioni di contatto strisciante
vengono ricavate dalla condizione di non-compenetrazione e dalla condizione di tangenza
fra le superfici, sotto l’ipotesi di curvatura arbitraria per entrambi le superfici tridimen-
sionali. Tali funzioni vettoriali vengono derivate rispetto al tempo, al fine di permettere
l’implementazione di un particolare schema risolutivo. Quest’ultimo risulta di agevole
applicazione nei formalismi per dinamica multibody che introducono vincoli per mezzo di
moltiplicatori lagrangiani.

ABSTRACT
In this paper we develop a novel approach to enforce the contact constraint for freeform
surfaces subjected to relative sliding motion.

The sliding-contact equations are developed either for the non-penetration condition
and for the surface-tangency condition, under the hypothesis of arbitrary curvature in 3D
space of both surfaces. These vectorial equations are differentiated twice in time and a
custom solution scheme is proposed in order to allow an optimal application to dynamic
and kinematic multibody simulation within the framework of a lagrangian approach.

1 INTRODUCTION

Higher-pair joints which are extensively used in applied mechanics, and advanced multi-
body software may be requested to perform simulations involving the contact between
arbitrarily-shaped surfaces. Cam-follower mechanisms are notable examples of such joints,
where the contact doesn’t happen between cylindrical or prismatic surfaces, as in lower-
pair joints, but happens instead along a line or a point.

Lower-pair joints (cylindrical joints, revolute joints, etc.) have been extensively studied
in multibody dynamics literature, but not so many methods have been discussed for a
general-purpose approach to the problem of the contact between freeform surfaces.

Figure 1: Example of contact between free-form rigid bodies.

The kinematics of two rigid bodies subject to sliding contact is complicated by the
fact that the curvature of their surfaces is liable of mutual accelerations; moreover these
curvatures could be non uniform as in the example of cams.

This problem has been already investigated by some researchers, for example [2] re-
cently suggested a method which fits well into whatever multibody formalism which is
based on joint-coordinates: in that paper the contact point becomes a joint of the kine-
matical chain of rigid bodies, and its coordinates are the four u,v parameters of the two
surfaces.

Instead, our method is rather targeted at multibody software based on the lagrangian
approach, where the constraints are added by means of lagrange multipliers.

Given that a fast and efficient way to handle the “point on a flat plane” basic constraint
has already been developed and tested within the framework of the lock formulation [1],
we managed to extend its capabilities to the case of contact between surfaces.

In fact, we can represent the contact constraint by introducing an auxiliary tangent
plane which moves between the two bodies as they slide. If one manages to compute
the exact position, alignment speed etc. of the tangent plane as function of body states
during the motion, the sliding-contact constraint can be expressed by means of a simple
“point on a flat plane” constraint, where the flat reference plane belongs to one of the two
bodies, and the point belongs to the other body. Note that both the point and the plane
must have specific relative motions respect to their bodies, because the plane must stay
tangent to the shifting contact point, and these kinematical contributions can be easily
applied to the “point on plane” constraint as described in the lock formulation (where
arbitrary speed/accelerations can be freely imposed to the references used to describe the
plane and the sliding point).

2 THE SLIDING PLANE APPROACH

Lets consider two indeformable rigid bodies being in contact, under the simplificative
hypothesis of existence and non-singularity of the point of contact (multi-point contacts
and degenerate situations of the type surface-surface or line-surface are not taken into
consideration)

Note that, for the moment, the hypothesis of unilateral constraint is not imperative,
therefore we will deal with bilateral contact for sake of semplicity -here we won’t discuss

F- v e r t e x - v e r t e xE - v e r t e x - e d g eD - e d g e - e d g e

C - e d g e - f a c eB - v e r t e x - f a c eA - f a c e - f a c e

Figure 2: Topology: cases of contact pairs
for BRep/cellular modeling. Only the face-face
case will be discussed here, since other can be
derived in a similar way.

Figure 3: Geometry: surfaces can be UV-
parametric (ex. Nurbs), ’limit’ (ex. Catmull-
Clark), polygonal, implicit, etc. Here we dis-
cuss the widespread case of Nurbs.

the problems of non-smooth dynamics and impacts, which are investigated for example
in [7] or [8]-.

It can be shown that the contact is geometrically correct if two conditions are satisfied
at once: the two surfaces must have a point in common, and the tangent planes in that
point must be the same.

Say ~PPo1−W,W is the point of contact on surface O1 expressed in absolute coordinate

system (W), and ~SSo2−W,W is the point of contact on surface O2 expressed in absolute

coordinate system (W). These vectors will be later referenced as ~Po1 and ~So2 for a more
compact notation.

The first constraint equation implies that ~Po1 and ~So2 must coincide in space, that is:

~Cps = ~Po1 − ~So2 = ~0. (1)

Now, say ~nno1−W,W is the unit-lenght normal to the surface O1 at the point of contact
~Po1, and ~nno2−W,W is the unit-lenght normal to the surface o2 on the point of contact ~So2.
These vectors will be later referenced as ~no1 and ~no2.

This lead us to the second constraint equation, which requires that the two surfaces
must be tangent at the contact point, hence the normals must be aligned:

~Cn = ~no1 + ~no2 = ~0. (2)

We assume that the position of point ~Po1 on surface of body O1 can be expressed (at
least, locally) as a function of two curvilinear coordinates uo1, vo1, and the same for point
~Po1, whose position on surface can be a function of two curvilinear coordinates uo2, vo2.
Hence, satisfying the equations 1 and 2 implies a system of nonlinear equations

~Cps,n = ~C (qo1, qo2, uo1, vo1, uo2, vo2, t)) = ~0. (3)

which must be solved either for the positions of the two bodies (the coordinates qo1, qo2),
either for the auxiliary variables uo1, vo1, uo2, vo2.

P

S
v2

u2

u1

v1

n1

n2

O2

O1

Figure 4: The bodies are taken apart to show
the contact point on body O1 and the sliding
plane on body O2. Contact happens for coin-
cident P and S, and for aligned normals ~no2

and ~no1 .

S
v2

u2

u1

v1

n2

O2

O1

P

n1

P
.

.
S

Figure 5: Exploded view. The contact point
~Po1 and the sliding plane must move on their
surfaces during relative body motion, so that
~Po1 and ~So2 share the same speed and position.

Note that one of the three scalar constraints of eq. 2 is redundant (because unit norm of
normals is implied, ‖ ~no1 ‖=‖ ~no1 ‖= 1), therefore the complete system of constraints eq.3
has 3 + (3− 1) = 5 scalar equations. Meanwhile, four auxiliary variables uo1, vo1, uo2, vo2

were added: hence the contact effectively subtracts 5− 4 = 1 degree of freedom from the
mechanical system, an intuitive result which is also confirmed by many authors dealing
with classical mechanical problems [10].

The introduction of four auxiliary variables in the state vector our system, as well
as the description of the contact by way of the 5-dimensional equation 3, of course adds
unwanted complication into our multibody formalism and may have a negative impact on
the performance of the simulation code.

Therefore one may want to reduce the system to a more handy formulation, where
only a single scalar constraint equation is added, and the four auxiliary variables can be
recovered afterward as dependent variables (i.e. only rigid body coordinates are intro-
duced in state system, while uo1, vo1, uo2, vo2 variables -and their derivatives- are computed
separately).

An effective way to accomplish this task may be represented by the sliding plane
approach, which we discuss in this paper. Such method introduces a ”point on plane”
constraint between the two contacting bodies, which is responsible of reducing the degrees
of freedom of the system by one unit. During the multibody simulation, the position of
the reference plane is continuously moved tangentially to the surface of a body (as well
as the reference point continuously moves on the surface of the other), thus updating the
auxiliary variables uo1, vo1, uo2, vo2 and their derivatives as dependent variables (fig.4,5).

Given that there’s no need to add the variables uo1, vo1, uo2, vo2 in system’s state vector,
the solution of kinematic and dynamic problems is somewhat simple: it just requires
the implementation of a holonomic constraint of the type ”point on a plane”, where
the position/speed/acceleration of both the reference point and reference plane can be
imposed. This is easily achieved, for example, through the lock formulation approach,

formulated in [1] and briefly discussed in the next paragraph.
Furthermore, as a positive side effect of this approach, the orthogonal contact force is

effortlessly recovered from the lagrangian multiplier of the ”point on plane” constraint.
However, special attention must be paid to the problem of computing the rheonomic

terms which are required by the lock formulation, as they will be responsible of the
acceleration effects caused by surface curvature. In other words, one must know not only
the position but also the speed of the contact point as a function of body states, in order to
set proper values for position/speed/acceleration of both the reference point and reference
plane. The paragraph ”Kinematics of contact plane” will deal with this problem.

3 BASIC POINT-PLANE CONSTRAINT VIA ”LOCK FORMULATION”

The so called ”lock formulation” relies heavily on quaternion algebra and offers a compact
yet efficient way to implement the derivations of constraint equations, where most common
holonomic and rheonomic constraints can be inherited from a single formalism. Moreover,
the jacobians are obtained analytically, and this has a positive impact on the performance
of multibody simulations based on the lagrangian approach.

Let consider two generic rigid bodies O1 ans O2, both with two auxiliary coordinate
systems P and S (the so called ”markers”) whose body-relative positions and body-relative
rotations can be constant or imposed via time-functions (fig. 6).

One can impose a translation constraint on the relative position of P respect to the
coordinate system of S: this is the ”positional” constraint. Also, one can impose a rotation
constraint on the relative rotation of P respect to S, in the coordinate system of S, and
this is the ”rotational” constraint.

If needed, both the positional and the rotational constraints can be expressed with
time-dependent functions, as well as the relative positions and relative alignments of
markers respect to their rigid bodies.

The effect of these positional and rotational constraints between P and S is a kind of
”glue” between the two bodies, hence the name lock formulation. This is expressed by 6
scalar equations. However, if one suppresses one or more scalar conditions, the constraint
gets some degrees of freedom and turns into specific holonomic constraints.

For example, a spherical joint is obtained by suppressing all the three scalar compo-
nents of the rotational constraints, and a cylindrical joint is obtained by suppressing -for
example- the Z positional component and the Z rotational component. In the same way
we can obtain lot of other holonomic constraints, for instance the prismatic guide, the
point-on-line condition, the point-on-plane condition (used extensively in this article), the
Cardano joint, the revolute joint, the parallelism condition, etc. Also, by setting adequate
time-dependant functions in the rheonomic terms of the equations, one can get whatever
kind of actuators, motors, motion laws, imposed trajectories, etc.

A simplified and compact version of the ”lock formulation” is described below, as a
quick reference, but advanced details and implementation issues are described extensively
in [1].

Let’s introduce the following notation:

• ~qxo1, ~qxo2, ~qθo1, ~qθo2, are the position-coordinates and rotation-coordinates of bodies
O1 and O2, where rotations are expressed as unit quaternions ~qθ,

O1 O2
P

S

W

O2

S

W

P

O1

Figure 6: Reference frames which are used to build constraints with the ”lock formulation”
method (two examples)

• ~qxP , ~qxS, ~qθP , ~qθS are the coordinates (positions and rotations) of markers P and S
respect to their bodies, O1 and O2, and may be user-imposed functions of time.

• [Λr] = [Λr(~qθr)] is a generic rotation matrix, function of a quaternion ~qθ,

• [Glo1] is a 3x4 rectangular matrix, function of the quaternion ~qθo1 , so that [Glo1]~̇qθo1
=

ωo1, as described in [11]

• [ã] is a skew symmetric matrix such that [ã]~b = ~a ∧~b

• ~qx∆ = ~f(t) and ~qθ∆ = ~f(t) are the imposed translation and rotation between P and
S, in coordinates of S.

Hence the positional constraint can be written as:

~Cx = ~qxP−S,S
− ~qx∆

= ~0 (4)

~Cx = [ΛS]T [Λo2]
T ((~qxo1 + [Λo1]~qxP

) (~qxo2 + [Λo2]~qxS
))− ~qx∆

= ~0 (5)

In order to obtain the jacobian matrix [Cq] and the vector [Qc], which are extensively

used in the equation ~̈Cx = [Cq]~̈q − ~Q = ~0 of lagrangian dynamics, one can differentiate
twice the eq. 5. Then, after some algebraic manipulations, the analytical expression for
the jacobian of the lock formulation constraint (translational part) can be written in the
following fashion:

[Cqx] =
[
[Cqx]xo1 [Cqx]θo1 [Cqx]xo2 [Cqx]θo2

]
(6)

where:

[Cqx]xo1 = +[ΛS]T [Λo2]
T

[Cqx]θo1 = −[ΛS]T [Λo2]
T [Λo1][˜~qxP

][Glo1]

[Cqx]xo2 = −[ΛS]T [Λo2]
T

[Cqx]θo2 = +[ΛS]T [Λo2]
T [Λo1][˜~qxP

][Glo1]

+[ΛS]T
[

˜[Λo2]T~qxP−S,W

]
[Glo2] (7)

Also, the ~Qx vector can be expressed as:

~Qx = +[ΛS]T [Λo2]
T

(
[Λo1][ω̃o1][ω̃o1] + 2[Λ̇o1]~̇qxP

[Λo1]~̈qxP

)
+

−[ΛS]T [Λo2]
T

(
[Λo2][ω̃o2][ω̃o2] + 2[Λ̇o2]~̇qxS

[Λo2]~̈qxS

)
+

+2[Λ̇S]T [Λ̇o2]
T~qxP−S,W

+ 2[Λ̇S]T [Λo2]
T ~̇qxP−S,W

+ 2[ΛS]T [Λ̇o2]
T ~̇qxP−S,W

+

+[ΛS]T [[Λo2][ω̃o2][ω̃o2]]
T ~qxP−S,W

+ [Λ̈S]T [Λo2]
T~qxP−S,W

− ~̈qx∆
(8)

On the other hand, the rotational constraint can be written in quaternion algebra as
follows:

~Cθ = ~q−1
θ∆

~qθP−S,S
− ~qθ< = ~0 (9)

where we introduced the real quaternion ~qθ< = [1, 0, 0, 0]T . However we won’t enter
into details for the rotational constraint, because this part of the lock formulation isn’t
necessary for the sliding contact theory presented in this paper (interested readers can
find the expressions for jacobian [Cqθ

] and vector Qθ in [1]).
At this point, many holonomic and rheonomic constraints can be inherited from the

formulation above, simply by suppressing some scalar constraints among the three equa-
tions for the traslation and/or the three equations for the rotation.

For example, the constraint ”point on plane” where the plane moves about one of the
two bodies following some prescribed position/speed/acceleration, can be easily recovered
from eq. 4 where only the 3rd scalar equation is taken into consideration. Hence the
reference P (whose motion on O1 surface can be set via ~qxP

, ~̇qxP
, ~̈qxP

, ~qθP
, ~̇qθP

, ~̈qθP
)

cannot move orthogonally to the XY plane described by the reference S (whose motion
on O2 surface can be set via the terms ~qxS

, ~̇qxS
, ~̈qxS

, ~qθS
, ~̇qθS

, ~̈qθS
).

4 KINEMATICS OF CONTACT PLANE

Since we have introduced the lock formulation (see equations 7 and 8) which allows the
representation of a simple point-plane constraint, now we must find the position and speed
of the references which define this kind of constraint in case the plane and the point are
moving on curved surfaces.

4.1 Contact plane: the position problem

As seen before, the contact constraint is expressed by two vectorial equations, the former
saying that the contact points on both the surfaces must have the same position in space,
and the latter implying that the two surfaces must be tangent (that is, the normals must
be aligned).

~Cps = ~Po1 − ~So2 = ~0. (10)

~Cn = ~no1 + ~no2 = ~0. (11)

The solution of the equations above for {uo1, vo1, uo2, vo2} is an highly non-linear prob-
lem, and the solutions can be multiple or even infinite in degenerate situations (for ex-
ample, if contact points are multiple, or along a line such as in the case of the contact
between two parallel cylinders). In this paper we will focus our attention on the situation
of a single contact. Also, we won’t deal the details of the procedures which can be used
to solve the non-linear problem of finding globally the contact point(s), because this topic
is extensively discussed in other scientific areas, for instance in computational geometry,
computer graphics and modelling ([3], [4], and [5]).

We just remark that collision-detection is a very time-consuming process, and efficient
procedures must be set up for this task, for example [4] one can pre-process a rough
tesselated approximation of the NURBS surface, then he can perform polygon-polygon
test very quickly, expecially if an hierarchical tree structure of bounding boxes has been
computed off-line as an optimization.

We experienced that after the ”global” rough approximation of the contact point has
been obtained with such polygon-proximity test, a more precise ”local” solution can be
refined by using local non-linear programming methods, such as the gradient or Newton
methods [9], which operate on the true -non tesselated- parametric surface.

Also, we further improved the efficiency of this geometric problem by performing
the “global” contact point search with a less dense time sample than the faster “local”
refinement. In fact the local position must be refined at each step of the simulation in
order to get smooth and accurate results, but the position-jumps of the contact point
(which are detected by the global method) may happen seldom. Think about a cam
and a follower: after the initial contact point between cam and follower have been found
once, the point may be updated during cam rotation just by using the local optimization
method, whose convergency can be fast because the previous positions can be used as
approximate guesses. Then, the global collision algorithm can be invoked less frequently,
just to check if there are sudden jumps in contact points (for example, the cam has a
dinch, or the follower touches another object, etc.) 1

4.2 Contact plane: the speed problem

We can differentiate both equations 1 and 2 respect to time. The variables of equation
1 are the four surface parameters {uo1, vo1, uo2, vo2} and the coordinates of the two rigid
bodies {~qo1, ~qo2}, therefore:

~̇Cps =
d

dt

[
~Po1(uo1, vo1, ~qo1)− ~So2(uo2, vo2, ~qo2)

]
= ~0. (13)

1Note: in general, because of nonlinearities, the position problem is approached iteratively: here two
operations are required for each iteration. The first stage involves a single step on Newton method for
solving the typical position problem of inverse kinematics:

∂ ~Cn

∂~q ∆~qi = [Cq]i ∆~qi = −~Ci

~qi+1 = ~qi + ∆~qi

(12)

where the constraints ~C(~q, t) contain all joints of the mechanical system including the ”point on plane”
constraint, and the second operation consists in updating the the position of the point of contact, using
the global/local optimization methods discussed above. The two stages are repeated until convergence
-if any- is reached.

Applying the chain rule of differentiation:

~̇Cps =


∂ ~Po1

∂uo1

∂uo1

∂t
+

∂ ~Po1

∂vo1

∂vo1

∂t
+

∂ ~Po1

∂~qo1

∂~qo1

∂t
+

∂ ~Po1

∂t


−


∂~So2

∂uo2

∂uo2

∂t
+

∂~So2

∂vo2

∂vo2

∂t
+

∂~So2

∂~qo2

∂~qo2

∂t
+

∂~So2

∂t


 (14)

The terms ∂ ~Po1

∂~qo1
and ∂~So2

∂~qo2
are matrices, with 3 rows and 6 columns (given that each

rigid body has 6 d.o.f.) and will be written [Pqo1] and [Sqo2] hereafter. Simplifying the
null terms, we can write the more compact form:

~̇Cps =


∂ ~Po1

∂uo1

u̇o1 +
∂ ~Po1

∂vo1

v̇o1 + [Pqo1]~̇qo1


−


∂~So2

∂uo2

u̇o2 +
∂~So2

∂vo2

v̇o2 + [Sqo2]~̇qo2


 (15)

Given that the state of the two bodies is known, the speeds ~̇qo1 and ~̇qo2 are known
as well, so we can collecting the unknown terms {u̇o1, v̇o1, u̇o2, v̇o2} in order to obtain the
following system:

[
∂ ~Po1

∂uo1

| ∂ ~Po1

∂vo1

| −∂~So2

∂uo2

| −∂~So2

∂vo2

]




u̇o1

v̇o1

u̇o2

v̇o2





= −[Pqo1]~̇qo1 + [Sqo2]~̇qo2 (16)

A quick glance at the system of eq.16, which has four unknowns and three scalar
equations, tells that some other equations must be written to get rid of the indetermination
and finally compute the parameters {u̇o1, v̇o1, u̇o2, v̇o2}. In fact now we must take into
consideration the abovementioned constraint on surface tangency, eq.2, which can be
differentiated as follows:

~̇Cn =
d

dt
[~no1(uo1, vo1, ~qo1) + ~no2(uo2, vo2, ~qo2)] = ~0. (17)

that is, using the same algebraic manipulations and differentiation rules used for 16:

~̇Cn =

(
∂~no1

∂uo1

∂uo1

∂t
+

∂~no1

∂vo1

∂vo1

∂t
+

∂~no1

∂~qo1

∂~qo1

∂t
+

∂~no1

∂t

)
+

(
∂~no2

∂uo2

∂uo2

∂t
+

∂~no2

∂vo2

∂vo2

∂t
+

∂~no2

∂~qo2

∂~qo2

∂t
+

∂~no2

∂t

)
(18)

~̇Cn =

(
∂~no1

∂uo1

u̇o1 +
∂~no1

∂vo1

v̇o1 + [nqo1]~̇qo1

)
+

(
∂~no2

∂uo2

u̇o2 +
∂~no2

∂vo2

v̇o2 + [nqo2]~̇qo2

)
(19)

The following system has three scalar equations and the same unknowns {u̇o1, v̇o1, u̇o2, v̇o2}
of system 16:

[
∂~no1

∂uo1

| ∂~no1

∂vo1

| ∂~no2

∂uo2

| ∂~no2

∂vo2

]




u̇o1

v̇o1

u̇o2

v̇o2





= −[nqo1]~̇qo1 − [nqo2]~̇qo2 (20)

We can put together the two systems 16 and 20 to get the following:




∂ ~Po1

∂uo1

∂ ~Po1

∂vo1

−∂~So2

∂uo2

−∂~So2

∂vo2

∂~no1

∂uo1

∂~no1

∂vo1

∂~no2

∂uo2

∂~no2

∂vo2








u̇o1

v̇o1

u̇o2

v̇o2





=





−[Pqo1]~̇qo1 + [Sqo2]~̇qo2

−[nqo1]~̇qo1 − [nqo2]~̇qo2





(21)

The system above has four unknowns and six scalar equations. However two equations
are redundant, to be more precise one of the first three equations and one of the last three
equations can be eliminated, to obtain a 4x4 system which can be readily solved for
{u̇o1, v̇o1, u̇o2, v̇o2}.

Let’s proof this. The tangent plane in P and S is the same for both the surfaces o1
and o2 because of equation 2, and we can build the rotation matrix [Λn] which is aligned
to such tangent plane. We can rewrite the system equations in that space, that is, after
a coordinate projection:

[
[Λn]T [0]T

[0]T [Λn]T

]



∂ ~Po1

∂uo1

∂ ~Po1

∂vo1

−∂~So2

∂uo2

−∂~So2

∂vo2

∂~no1

∂uo1

∂~no1

∂vo1

∂~no2

∂uo2

∂~no2

∂vo2








u̇o1

v̇o1

u̇o2

v̇o2





=

[
[Λn]T [0]T

[0]T [Λn]T

] {−[Pqo1]~̇qo1 + [Sqo2]~̇qo2

−[nqo1]~̇qo1 − [nqo2]~̇qo2

}
(22)

One can easily verify that, if [Λn] has been built with the Z axis parallel to the surface
normals (that is, if [Λn]T~no1 = {0, 0, 1}T) then the third and sixth row of system 22 have
null coefficients. In other words, either vectorspaces of eq. 13 and eq. 17 spawn the
tangent spaces of ~P (u, v) and ~S(u, v) when eq. 1 and eq. 2 are satisfied and the states
~qo1, ~qo2, ~̇qo1, ~̇qo2 are coherent with the point-plane constraint equation (see later).

Therefore we can get rid of the 3rd and 6th row of system 22 simply by using the
first two rows of the 3x3 rotation matrix [Λn]T when performing the projection in tangent
coordinates. This means that we can introduce the 3x2 matrix [λuv] which is like [Λn]
except it hasn’t the 3rd column, which represents the orthogonal versor, i.e. the surface
normal. This means that the two columns of [λuv] are simply obtained as two generic
orthogonal versors contained in the tangent plane. This lead to the following system in
”surface tangent coordinates”:

[
[λuv]

T [0]T

[0]T [λuv]
T

]



∂ ~Po1

∂uo1

∂ ~Po1

∂vo1

−∂~So2

∂uo2

−∂~So2

∂vo2

∂~no1

∂uo1

∂~no1

∂vo1

∂~no2

∂uo2

∂~no2

∂vo2








u̇o1

v̇o1

u̇o2

v̇o2





=

[
[λuv]

T [0]T

[0]T [λuv]
T

] {−[Pqo1]~̇qo1 + [Sqo2]~̇qo2

−[nqo1]~̇qo1 − [nqo2]~̇qo2

}
(23)

Then, the coefficient matrix of the system has 4 rows and 4 columns, and the straight-
forward Gauss solution scheme can be applied in order to obtain {u̇o1, v̇o1, u̇o2, v̇o2} as
desired.

4.3 Contact plane: the acceleration problem

Now we can perform a further differentiation of eq.13 and eq.17 in order to obtain the
unknown accelerations of the points of contact on the two surfaces, expressed in parametric
coordinates as {üo1, v̈o1, üo2, v̈o2}.

For eq. 13 we have:

~̈Cps =
d

dt





∂ ~Po1

∂uo1

u̇o1 +
∂ ~Po1

∂vo1

v̇o1 + [Pqo1]~̇qo1


−


∂~So2

∂uo2

u̇o2 +
∂~So2

∂vo2

v̇o2 + [Sqo2]~̇qo2





(24)

~̈Cps =
∂ ~Po1

∂uo1

üo1 +
∂2 ~Po1

∂uo1∂uo1

u̇o1u̇o1 +
∂2 ~Po1

∂uo1∂vo1

u̇o1v̇o1 +
∂2 ~Po1

∂uo1∂~qo1

u̇o1~̇qo1

+
∂ ~Po1

∂vo1

v̈o1 +
∂2 ~Po1

∂vo1∂uo1

v̇o1u̇o1 +
∂2 ~Po1

∂vo1∂vo1

v̇o1v̇o1 +
∂2 ~Po1

∂vo1∂~qo1

v̇o1~̇qo1

+
∂ ~Po1

∂~qo1

~̈qo1 +
∂2 ~Po1

∂~qo1∂uo1

~̇qo1u̇o1 +
∂2 ~Po1

∂~qo1∂vo1

~̇qo1v̇o1 +
∂2 ~Po1

∂~qo1∂~qo1

~̇qo1~̇qo1

−∂~So2

∂uo2

üo2 − ∂2~So2

∂uo2∂uo2

u̇o2u̇o2 − ∂2~So2

∂uo2∂vo2

u̇o2v̇o2 − ∂2~So2

∂uo2∂~qo2

u̇o2~̇qo2

−∂~So2

∂vo2

v̈o1 − ∂2~So2

∂vo2∂uo2

v̇o2u̇o2 − ∂2~So2

∂vo2∂vo2

v̇o2v̇o2 − ∂2~So2

∂vo2∂~qo2

v̇o2~̇qo2

−∂~So2

∂~qo2

~̈qo2 −
∂2~So2

∂~qo2∂uo2

~̇qo2u̇o2 − ∂2~So2

∂~qo2∂vo2

~̇qo2v̇o2 − ∂2~So2

∂~qo2∂~qo2

~̇qo2~̇qo2 (25)

Similarly, for eq. 17 we have: n

~̈Cn =
d

dt

[(
∂~no1

∂uo1

u̇o1 +
∂~no1

∂vo1

v̇o1 + [nqo1]~̇qo1

)
+

(
∂~no2

∂uo2

u̇o2 +
∂~no2

∂vo2

v̇o2 + [nqo2]~̇qo2

)]
(26)

~̈Cn =
∂~no1

∂uo1

üo1 +
∂2~no1

∂uo1∂uo1

u̇o1u̇o1 +
∂2~no1

∂uo1∂vo1

u̇o1v̇o1 +
∂2~no1

∂uo1∂~qo1

u̇o1~̇qo1

+
∂~no1

∂vo1

v̈o1 +
∂2~no1

∂vo1∂uo1

v̇o1u̇o1 +
∂2~no1

∂vo1∂vo1

v̇o1v̇o1 +
∂2~no1

∂vo1∂~qo1

v̇o1~̇qo1

+
∂~no1

∂~qo1

~̈qo1 +
∂2~no1

∂~qo1∂uo1

~̇qo1u̇o1 +
∂2~no1

∂~qo1∂vo1

~̇qo1v̇o1 +
∂2~no1

∂~qo1∂~qo1

~̇qo1~̇qo1

+
∂~no2

∂uo2

üo2 +
∂2~no2

∂uo2∂uo2

u̇o2u̇o2 +
∂2~no2

∂uo2∂vo2

u̇o2v̇o2 +
∂2~no2

∂uo2∂~qo2

u̇o2~̇qo2

+
∂~no2

∂vo2

v̈o1 +
∂2~no2

∂vo2∂uo2

v̇o2u̇o2 +
∂2~no2

∂vo2∂vo2

v̇o2v̇o2 +
∂2~no2

∂vo2∂~qo2

v̇o2~̇qo2

+
∂~no2

∂~qo2

~̈qo2 +
∂2~no2

∂~qo2∂uo2

~̇qo2u̇o2 +
∂2~no2

∂~qo2∂vo2

~̇qo2v̇o2 +
∂2~no2

∂~qo2∂~qo2

~̇qo2~̇qo2 (27)

For the same reasons which lead to eq.22 and eq.23, the previous equations 27 and 25
can be projected in tangent coordinates (discarding the orthogonal coordinate) obtaining
a linear system with 4 unknowns and 4 equations:

[
[λuv]

T [0]T

[0]T [λuv]
T

]



∂ ~Po1

∂uo1

∂ ~Po1

∂vo1

−∂~So2

∂uo2

−∂~So2

∂vo2

∂~no1

∂uo1

∂~no1

∂vo1

∂~no2

∂uo2

∂~no2

∂vo2








üo1

v̈o1

üo2

v̈o2





=

[
[λuv]

T [0]T

[0]T [λuv]
T

]




~Qps

~Qn





(28)

where ~Qps and ~Qn are the vectors of the known terms of eq. 27 and 25.
By means of the above formulation, one can solve 23 and 28 to get, respectively, the

parametric speeds and parametric accelerations {u̇o1, v̇o1, u̇o2, v̇o2} and {üo1, v̈o1, üo2, v̈o2}.
In fact this works well as far as the contact-on-point doesn’t degenerate into the

contact-on-line or contact-on-surface situations, where the matrices of coefficients become
ill conditioned. This happens, for example, when a shaft is inserted into a cylindric hole
with exactly the same diameter. Hence singular situations must be carefully monitored
and handled.

Once one has obtained {u̇o1, v̇o1, u̇o2, v̇o2} and {üo1, v̈o1, üo2, v̈o2}, it’s easy to update the
equations of the point-on-plane holonomic constraint. As described in the introduction,
such condition consists in a plane (whose position, speed and acceleration about body O1
are known) which constraints a point belonging to object O2 (also position, speed and
acceleration of this point about o2 must be known).

Note that eq. 23 and 28 provide speeds and accelerations in parametric coordinates,
while the point-on-plane constraint formulation needs body-relative carthesian speeds and

accelerations, like ~̇P o1, ~̈P o1 etc. It’s easy, however, to compute these terms as functions
of parametric speeds and accelerations: given the expression of the parametric surfaces

~Po1 = ~Po1 (uo1, vo1) (29)

~So1 = ~So1 (uo2, vo2) (30)

it follows:

~̇P o1 = u̇o1
∂ ~Po1

∂uo1

+ v̇o1
∂ ~Po1

∂vo1

(31)

~̇So2 = u̇o2
∂~So2

∂uo2

+ v̇o2
∂~So2

∂vo2

(32)

and similarly, for the accelerations:

~̈P o1 = üo1
∂ ~Po1

∂uo1

+ v̈o1
∂ ~Po1

∂vo1

+ u̇2
o1

∂2 ~Po1

∂uo1∂uo1

+ v̇2
o1

∂2 ~Po1

∂vo1∂vo1

+ u̇o1v̇o1
∂2 ~Po1

∂uo1∂vo1

(33)

~̈So2 = üo2
∂~So2

∂uo2

+ v̈o2
∂~So2

∂vo2

+ u̇2
o2

∂2~So2

∂uo2∂uo2

+ v̇2
o2

∂2~So2

∂vo2∂vo2

+ u̇o2v̇o2
∂2~So2

∂uo2∂vo2

(34)

The partial derivatives in eq. 31, 32, 33 and 34, can be obtained by straightforward
numerical differentiation of equations 29 and 30.

Note that we can distinguish two components for the P,S accelerations of eq.33 and
34:

~̈P o1 = ~̈P o1,‖ + ~̈P o1,⊥

~̈So2 = ~̈So2,‖ + ~̈So2,⊥ (35)

The terms ~̈So2,‖ and ~̈P o1,‖, depending on parametric tangential accelerations ü, v̈ only,
can be called ’tangential components’ since from eq.33 and 34 it is easy to see that these
vectors are always directed tangentially to the contact surfaces.

~̈P o1,‖ = üo1
∂ ~Po1

∂uo1

+ v̈o1
∂ ~Po1

∂vo1

(36)

~̈So2,‖ = üo2
∂~So2

∂uo2

+ v̈o2
∂~So2

∂vo2

(37)

The terms ~̈So2,⊥ and ~̈P o1,⊥, depending on parametric tangential speeds u̇, v̇ only, can
be called ’centripetal components’ (note some analogies with tangential and centripetal
accelerations for classical 2D mechanics).

~̈P o1,⊥ = u̇2
o1

∂2 ~Po1

∂uo1∂uo1

+ v̇2
o1

∂2 ~Po1

∂vo1∂vo1

+ u̇o1v̇o1
∂2 ~Po1

∂uo1∂vo1

(38)

~̈So2,⊥ = u̇2
o2

∂2~So2

∂uo2∂uo2

+ v̇2
o2

∂2~So2

∂vo2∂vo2

+ u̇o2v̇o2
∂2~So2

∂uo2∂vo2

(39)

Now, one can see that the ’tangential’ terms do no affect at all the computation of

acceleration terms of the point on plane constraint (that is, inserting ~̈So2,‖ and ~̈P o1,‖ in

eq.8 gives always a null vector, because ~̈P o1,‖ ∈ ker([Cqx]) and ~̈So2,‖ ∈ ker([Cqx]) when
position constraint is satisfied). This means that only the ’centripetal’ terms have true
significance for the point-on plane constraint.

In detail, this is very important for the practical implementation of the sliding plane
method in a dynamical simulator: in fact the computation of the constraint vector ~Qx

as in eq.8 can take ~̈qxP
= ~̈P o1,⊥ and ~̈qxS

= ~̈So2,⊥ instead of ~̈qxP
= ~̈P o1 and ~̈qxS

= ~̈So2,
with identical results. Since ’tangential’ terms eq.36 and eq.37 aren’t needed, there’s no
need to solve the system 28 for parametric accelerations: this has a positive impact on
computation speed and -most important- on the ability to solve for unknown rigid body
accelerations during dynamics 2.

2This consideration avoids a potential tautology, given that the multibody dynamical solution includes
the rheonomic constraint of eq.8 in order to solve for unknown bodies’accelerations, but the term eq.8
itself contains motion laws of references P,S which, among all other things, seem to be functions of
body accelerations in their turn, as given in eq.28. However, this ’deadlock’ situation is resolved by the
abovementioned consideration, that only the ’centripetal’ (speed-dependent) part of P,S references has
effect on the term eq.6 of the point-on plane constraint. That is, we don’t need the a-priori knowledge
of body accelerations in order to compute all the terms of the sliding plane constraint in the dynamical
solution problem: speed knowledge is enough.

5 IMPLEMENTATION

An efficient approach to the solution of the DAE (differential algebraic) problem of con-
strained lagrangian dynamics is discussed in [12]. The solution scheme exposed in fig. 7
relies on that method, which includes two constraint-stabilizing steps per each integra-
tion step of the underlying ODE problem. Note that, among all the constraints equations,
there is always the contact constraint expressed as a point on plane condition.

During the iterative N-Raphson procedure, the problem of updating the position of
the ”sliding plane” (step A2) is uncoupled from the constraint closure problem (step
A1), and both are executed at each iteration one after the other. This causes a simple
implementation, while convergence of the method is still good as if A1 and A2 problems
were coupled.

A1- Constraint position drifting removal

Solve stabilization for C(q,t)=0, to satisfy all constraints of multibody
system, hence correcting state q.

Among the constraint there may be one or more ‘point on plane’
conditions for the surface contacts.

B1- Constraint speed drifting removal

Solve the linear problem 0)t,(C =q& , stabilizing speed drifting in
multibody system constraints, hence correcting state (speed part).

Among the constraint there may be one or more ‘point on plane’
conditions for the surface contacts.

A2- Contact point position update

Update the position of contact point by solving or minimizing the
non-linear eq. 3 (use previous position as initial guess � few steps)

B2- Contact point speed & acceleration update

Update the speed and acceleration of references P and S used to
build the ‘sliding plane’ contact: use eq. 23, 38, 39

C- Compute system unknowns

Solve the ODE part of the semi-explicit form of the lagrangian
multibody problem, to get accelerations and multipliers (reactions).

Among the constraint there may be one or more ‘point on plane’
conditions for the surface contacts.

Explicit integration
(es: Runge-Kutta)

Speed closure

Position closure
(non linear problem

solved by iterative
scheme, es: N-Raphson)

Advance to next integration time step

D- Compute new state (use integration formulas to update state)

A2, B2
(if integrating with high
order methods, contact
must be kept updated at
each dY/dt evaluation
with new state)

Figure 7: Integration scheme (simplified flowchart)

Later, having obtained the correct orientation and position for the sliding plane con-
straint, the speed closure of constraints can be easily solved too (step B1).

We remark that, once positions and speeds of multibody state are correct, one can
compute eq. 23, 31 and 32, as well as 38 and 39 without problems (step B2), then obtaining

all the informations about the speed and centripetal acceleration of the references ~Po1 and
~So2 which are used to represent the sliding plane constraint.

In fact the computation of unknowns accelerations for a given state (step C) can

take place only if the kinematics of ~Po1 and ~So2 is correct in terms of both positions,
speeds and accelerations: again we stress the point that only the ’centripetal’ parts of
references’accelerations (depending only on parametric speeds eq.23) is required in eq.8
of the lock formulation, while the ’tangential’ part of acceleration (which depends from

eq.28) has no effect at all on that constraint. Therefore, only after step C, one may
compute also eq. 28, eq.33 and eq.34 in order to get also the complete accelerations of
contact points (i.e. including tangential effect), if needed.

6 EXAMPLES

To validate the model of contact, we built a simple cam-follower mechanism using the
three dimensional modeling environment of our multibody software. The cam and the
follower are made of NURBS bi-parametric surfaces (fig. 8).

In detail, the shape of the cam has been created with a procedural modeling tool which
uses the formulas in [10], where one gets the profile as a function of the motion law imposed
to the follower. Therefore, using a test motion law, we built the cam surface for that
motion, using 200x4 control points (the more the samples, the less the approximation).

Figure 8: Cam-follower benchmark for contact between freeform surfaces

We performed the simulation of the mechanism, and compared the resulting motion
of the follower (moved only by contact) with the hypothetical ”exact” motion law that
we used to build the cam. We observed little or no differences in position and speed of
the follower, but sometimes a small noise can affect acceleration (fig.10) mostly because
the cam hasn’t an analytical shape, but it is approximated by 5th-degree Nurbs).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0

cam rotation [rad]

[rad]

y exact
y contact

Figure 9: Comparing the two motion laws:
exact (analytical original) and simulated mo-
tion of follower (moved by contact): they over-
lap perfectly.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.4

-0.2

0

0.2

0.4

cam rotation [rad]

[rad]

y

y’

y’’

Figure 10: Speed and acceleration compari-
son. The speed profile of simulated motion
coincides exactly with the analytical profile.
Note some high frequency numerical noise on
acceleration.

7 CONCLUSIONS

An approach has been proposed for the multibody simulation of sliding contact between
freeform surfaces. The geometric constraint has been represented by means of a tangential
plane which moves between the contact bodies, hence only a simple ”point on plane”
constraint had to be added to the system of motion-equations. On the other side, the
problem of computing the auxiliary variables of the contact constraint (position, speed
and acceleration of contact point) could be solved separately, mostly for sake of better
performance. The theoretical result have been implemented into our general-purpose
multibody software and have been successfully tested with real world examples. Future
developements may embrace the application of these results to non-parametric surfaces
and the problem of high-performance collision detection.

BIBLIOGRAFIA

[1] A.Tasora and P.Righettini, Application of quaternion algebra to the efficient computation
of jacobians for holonomic-rheonomic constraints, EUROMECH 404, Lisboa, 1999.

[2] C.Balling, Formulation of a class of higher-pair joints in multibody systems using joint
coordinates, Multibody System Dynamics vol.3, Ed. Kluwer Academic Publishers, The
Netherlands, 1999, 21-45.

[3] J.Cohen, M.C.Lin,D.Manocha and M.Ponamgi, I-collide: an interactive and exact collision
detection system for large-scale environments, Proc. of ACM Interactive 3D Graphics
Conference, 1995, 189-196.

[4] S.Gottschalk, M.C.Lin, D.Manocha, OBB tree: a hierarchical structure for rapid interfer-
ence detection, Proc. of ACM Siggraph’96, 1996, 171-180.

[5] S.Krishnan, A.Pattekar, M.Lin and D.Manocha, Spherical shell: a higher order bounding
volume for fast proximity queries, Proc. of 3rd International Workshop on Algorithmic
Foundations of Robotics, 1998.

[6] D.Baraff, Curved Surfaces and Coherence for Non-penetrating Rigid Body Simulation,
Computer Graphics (Proc. ACM Siggraph’90, Dallas), Volume24, Number 4, August 1990.

[7] Ch.Glocker, F.Pfeiffer, Dynamical systems with unilateral contacts, Nonlinear Dynamics
9(3), 1992, 245-259.

[8] H.M.Lankarani and M.Pereira, Treatment of impact with friction in multibody mechanical
systems, EUROMECH 404, Lisboa, 1999.

[9] S. Rao, Engineering Optimization: Theory and Practice, Wiley and Sons.

[10] G.Ruggieri, Magnani, Progettazione meccanica funzionale ed. UTET, Torino, 1990

[11] A.Shabana, Multibody Systems, Ed. John Wiley and Sons, New York, 1989.

[12] A.Tasora, An optimized lagrangian multiplier approach for interactive multibody simula-
tion in kinematic and dynamical digital prototyping, VII ISCSB, Milano, 2001.

