
MULTIBODY DYNAMICS 2007, ECCOMAS Thematic Conference
C.L. Bottasso, P. Masarati, L. Trainelli (eds.)

Milano, Italy, 25–28 June 2007

ARCHITECTURE OF THE CHRONO::ENGINE PHYSICS
SIMULATION MIDDLEWARE

Alessandro Tasora?, Marco Silvestri?, and Paolo Righettini†

?Dipartimento di Ingegneria Industriale
Universitá degli Studi di Parma, Parco Area delle Scienze 181/A, 43100 Parma, Italy
e-mails: tasora@ied.unipr.it, silvestri@ied.unipr.it web page:

http://ied.unipr.it/˜tasora

†Dipartimento di Ingegneria Elettrotecnica
Politecnico di Milano, Piazza Leonardo da Vinci, 20100 Milano, Italy

e-mail: righettini@mech.polimi.it

Keywords: Multibody, Software architecture, middleware, simulation.

Abstract. This article outlines design and implementation issues of the Chrono::Engine soft-
ware, a library of C++ objects and functions which can be used by third-party developers to
implement applications featuring complex physical simulations.

Programmers can exploit the functionalities of Chrono::Engine to address typical problems
encountered in the multibody field, such as dynamical, kinematic and static simulations.

Special care has been paid in developing a robust, modular, portable, expandable and fast
software architecture. An application based on this library, featuring graphical user interface
and interactive 3D modelling, has been already implemented, demonstrating the reliability and
the efficiency of the Chrono::Engine middleware.

1

Alessandro Tasora, Marco Silvestri and Paolo Righettini

1 INTRODUCTION

Developing software for general-purpose multibody simulation is a challenging task, in-
volving interdisciplinary knowledge borrowed from fields like theoretical mechanics, physics,
numerical analysis, computer science, graph theory and computational geometry, to name a few.

Software houses interested in embedding physical features in their applications may prefer to
overcome the difficulties of implementing their own multibody simulation methods, by relying
on ready-to-use libraries. These libraries, possibly along with asset management tools, are
hence called middleware.

Recently, software houses like Ageia, Havok and Pixelux made massive investments and ad-
vancements in the field of middleware for multibody simulation because of the interest coming
from the multi-million videogame industry [1].

This approach has been extensively used in the CAD field, where complex computational
geometry issues are resolved by robust libraries like ParasolidTM or ACISTM , but only recently
took momentum in the simulation field.

As most middleware, the Chrono::Engine project is based on a application program inter-
face (API) for developing in C++ language, that is C++ header files and static and/or dynamic
libraries (.dll) containing the pre-compiled code. In order to allow third-party developers to
take advantage of Chrono::Engine simulation features, special attention has been paid in pro-
viding a set of robust, tested, coherent and well documented functions. Given the complexity
of the project, approaching one thousand of source files, the software is organized in classes as
recommended by the Object Oriented Programming paradigm, targeting modularity, encapsu-
lation, reusability and polymorphism [2].

2 ARCHITECTURE

In Fig. 1 one can see how the Chrono::Engine library represents a software layer between
OS-level functionalities and end-user applications. For example, the picture shows that custom
applications can rely on this API, for instance an embedded software for flight simulation, a
virtual reality program, a CAD, and so on. The library itself is based on a Javascript parser, to
allow scripting and easy access to inner functions also by means of scripting.

Thank to compliance to pure ANSI C++ and an OS-abstraction layer, the library is platform
independent and is available on different operating systems: this requires a a documented sup-
port of various build systems (Jam, Nmake, Cmake) and a complex mainenance of IDE-based
configurations.

The optional Chrono Plug-in module is an application which provides a full-featured GUI
(Graphical User Interface) for the Chrono::Engine software, on which it is based upon. Given
the complexity of keeping up-to date an application with 3D viewing and animation capabilities,
Chrono Plug-in relies on a 3-rd party modeler 1 for visualization and interaction with the user.
Thank to the ROOPS2 layer, also the Chrono Plug-in is platform-independent.

Another optional module, Revolution4D Plug-in, has been developed in sake of a method to
import 3D models from third-party CAD software. This module uses the open-source Open-
CASCADE library to parse and convert complex models from STEP, IGES or other formats.

The modular approach, based on a middleware surrounded by optional modules with user

1Realsoft3D, from Realsoft OY. This software provides modeling with CSG or B-rep geometrical representa-
tion, a material system, ray-tracing shading for quality rendering and other typical features often available in 3D
modeling applications.

2Realsoft Object Oriented Programming System

2

Alessandro Tasora, Marco Silvestri and Paolo Righettini

CHRONO
shell

CHRONO
Embedded
applications

JavaScript
engine

CHRONO Plug-In
Interactive interface
and modeling

 REVOLUTION4D Plug-In

OpenCASCADE
Geometric kernel

ROOPS
Realsoft Object Oriented
Programming System

 CHRONO::ENGINE

REALSOFT3D
Rendering and 3D
animation

 OS abstraction

 OS abstraction OS abstract. OS abstr.

HW Hardware

OS operating system (Linux, WindowsTM, etc.)

API layers

Applications

OpenGL

HyperOCTANT

EdgeTEMPEST

Figure 1: Dependency of the Chrono::Engine middleware.

interfaces, allowed us to concentrate efforts on physical issues without worrying too much about
GUI and OS details.

Moreover, the Chrono::Engine library itself is divided in further components. For instance
there is a module for basic linear algebra, a module for numerical methods, and so on, each
module belonging to a separate C++ namespace. Among these, the most noticeable components
are HyperOCTANT and EdgeTEMPEST.

2.1 The HyperOCTANT library

To address the dynamical analysis of large systems we developed the custom HyperOCTANT
solver, which can handle the critical cases of friction, collision and stacking. This component
embeds either a direct simplex solver and an iterative fixed-point method.

Since algorithmic robustness is an imperative requirement for real-time applications, this
solver can also handle the cases of redundant or ill-posed constraints.

The HyperOCTANT library relies on a recent numerical method which avoids the temporary
allocation of matrices [9].

2.2 The EdgeTEMPEST library

Sometime it is necessary to simulate contacts and collisions between sliding or rolling shapes,
as in the case of conveyor belts, packaging machines and so on. If so, collision detection fea-
tures are needed. To this end, the EdgeTEMPEST component has been developed.

The EdgeTEMPEST library embeds a three stage collision detection pipeline. At each simu-
lation step, an optimized broad phase algorithm can detect the potential colliding pairs using the
sweep-and-prune approach. This avoids a combinatory complexity as in brute force approaches,
and allows scenarios with thousands of colliding bodies.

After the narrow-phase, a further refinement is done by a stackless binary-traversal method,
which explores the AABB trees of the two potential colliding meshes in case these are made of
many triangles or compound shapes.

Finally, the narrow phase stage can detect the precise position for the colliding points.
The EdgeTEMPEST module features a persistent contact manifold and robust fallbacks for

degenerate cases: in this way it is possible to simulate singular situations like the case of a
cylinder over a flat surface, and so on.

The case of contact between freeform surfaces is handled without the need of polygonal

3

Alessandro Tasora, Marco Silvestri and Paolo Righettini

Figure 2: Example of class inheritance diagrams for rigid body and link classes.

approximations [8], although at a cost of high computational requirements.

3 IMPLEMENTATION

The Chrono::Engine middleware is written in C++ language: all items are organized in
classes and namespaces, according to the OOP guidelines. Classes and objects have been tested
and profiled for fast execution, in order to achieve real-time performance even for complex
scenarios.

Modern programming techniques have been adopted, like metaprogramming, class templat-
ing, shared pointers, class factories, memory leak trackers, cross platform and cross compiler
archiving, persistent-transient data mapping [5]. The C++ feature of operator overloading have
been used to provide a compact algebra to manage quaternions, static and moving coordinate
systems.

3.1 Class design

Using software engineering design techniques, such as UML and OMT, a broad set of classes
has been outlined and implemented.

A full documentation of all classes and their members is reported in [10], along with exam-
ples. The documentation of the API is completely automated by means of the Doxygen tool,
which extracts class member description from formatted comments in the source code.

Some classes, as those depicted in Fig. 2, belong to deep inheritance trees. A noticeable
example is the ChBody class: rigid body objects, featuring attributes such as mass and inertia,
also inherit features such as speed and acceleration from the parent class ChMovingFrame
(while the more general ChFrame class just defines position and alignment). Thank to multiple
inheritance, the ChBody also owns the features of ChObj and ChShared classes, for instance
the name attribute or the capability of being serialized from transient to persistent data.

A complex class hierarchy is related to mechanical constraints, since Chrono::Engine fea-
tures dozens of different joints: revolute joints, spherical bearings, prismatic guides, gears,
screws, imposed trajectories, surface contact, glyphs and so on.

Aiming at the fast simulation of systems with thousands of bodies, crucial issues have been
addressed. In detail, most algorithm had to be reduced to the O(n) linear-time linear-space
complexity order, by adopting sparse matrices [7] or innovative iterative methods [9]. Also,
Chrono::Engine can handle non-smooth simulations as those arising from colliding and con-
tacting bodies, using the differential inclusion approach of [6].

4

Alessandro Tasora, Marco Silvestri and Paolo Righettini

r(t,α)

k

x=x(t)

f

mB , J B

mA , J A b_G

b_B

m_0
m_1

m_2
m_3

b_A

c_B

c_A

CH_System pendolo

CH_Body b_G

CH_Function x(t)

CH_Body b_A

CH_Body b_B

CH_Force f

CH_Link c_A

CH_LinkForce k

CH_Function r(t)

CH_Link c_B

CH_LinkForce r

CH_Function r(α)

CH_LinkLimit v

CH_Marker m_0

CH_Marker m_1

CH_Marker m_2

CH_Marker m_3

Figure 3: Object diagram showing pointer relationships between physical items.

Component Source files Lines of code Classes

Chrono::Engine

EdgeTempest 206 37’029 121
HyperOctant 37 5’305 19
Physics 103 35’418 53
Core functions 39 14’462 26
Other 106 33’274 46

Chrono plugin 300 89’171 180
Revolution4D 119 23’063 65

TOTAL 910 237’722 510

Table 1: Software metrics, at 26-2-2007.

Physical systems are described in terms of rigid bodies connected by constraints, in unlimited
number. This means that a transient database of physical items must be kept updated using run-
time allocated containers: as shown in Fig.3, the physical system object owns either a list of
rigid bodies and a list of constraints. Meanwhile, also rigid bodies have their own containers:
these can be used to add forces and auxiliary references to rigid bodies.

Thank to polimorphism and abstraction, a large set of specialized constraint types can be
either used or modified by inheritance, without requiring any modification to the CHsystem
class or to the solver. These constraints (joints, screws, clutches, brakes, springs, etc.) are
organized in a large class hierarchy. Specific constraints have been added to allow the simulation
of drives and linear motors, with special attention to mechatronic and robotic applications.

Items can be added or removed from containers even while the simulator is running: this
may be a requirement for some kind of real-time user interaction, such as in VR applications.

In Tab.1 there is a summary showing the SLOC (Source Lines Of Code) for all the C++ com-
ponents of the Chrono::Engine project, along with the number of classes and source files. These
software metrics show that only a fraction of the coding efforts is about about physical issues
while, on the other hand, components for collision detection require a complex and meticulous
design.

4 EXAMPLES

The Chrono::Engine library has been extensively used in many engineering projects. In this
paragraph we present some basic examples.

5

Alessandro Tasora, Marco Silvestri and Paolo Righettini

5 A basic test: a pendulum

Following is a basic example on how to create and simulate a pendulum inside a C++ pro-
gram.

ChSystem my_system; // create the physical system

ChSharedBodyPtr my_body_A(new ChBody); // create the truss
ChSharedBodyPtr my_body_B(new ChBody); // create the pendulum

my_body_A->SetBodyFixed(true); // truss does not move
my_body_B->SetPos(ChVector<>(0,-2,0)); // ex. set initial position for pendulum

// create a revolute joint
ChSharedPtr<ChLinkLockRevolute> my_link_AB(new ChLinkLockRevolute);
my_link_AB->Initialize(my_body_A,

my_body_B,
ChCoordsys<>(ChVector<>(1,2,0)));

my_system.AddBody(my_body_A); // add the truss to the system
my_system.AddBody(my_body_B); // add the pendulum to the system
my_system.AddLink(my_link_AB); // add the joint to the system

while(my_system.GetTime()<10) // 10s of default dynamic simulation
{

my_system.StepDynamics(0.01); // advance the simulation

// ..do something, ex. plot results, etc.
}

In the example above, a remarkable issue is the fact that dynamically allocated instances,
such as rigid bodies and constraints, are managed by shared pointers 3. This means that the
programmer does not need to care about the deletion of instances, because deallocation happens
automatically. This has positive side effects on the ease of coding and minimizes the risk of
memory leaks.

The simulation is advanced in the while(){...} loop, thank to the StepDynamics()
function. In this loop, one could perform additional tasks such as update the position of 3D
shapes on the screen, plot data, acquire interactive user input for man-in-the-loop simulations,
share data with acquisition devices for real-time applications, and so on. Using specific settings,
the StepDynamics() function may perform multiple sub-steps, if integration with steps of
variable size is required for stiff systems.

6 The Granit robot

The Granit robot is a parallel kinematics manipulator which features very high precision and
stiffness [11]. This design has been tested, developed and optimized using the Chrono plug-in.
By means of multibody simulations, repeated over a set of benchmark trajectories, the optimal
compromise between motor, reducer and arm dimensions has been obtained.

Fig.4 shows a frame from one of the many simulations, along with a plot of the torque
requested by one of the four motors in order to move the end-effector along the benchmark
trajectory.

Thank to the optimal design, this robot is able of accelerations in excess of 40m/s2 with-
out sacrificing precision and repeatability, both about 0.01mm. The robot is currently being
succesfully used in an industrial environment.

3In Chrono::Engine there are classes for handling pointers as a special type of smart pointers, either of intrusive
or non-intrusive type.

6

Alessandro Tasora, Marco Silvestri and Paolo Righettini

0 0.5 1 1.5 2 2.5 3-0.4

-0.2

0

0.2

0.4

0.6

t

y
y

�����������	
����

��

������

Figure 4: Simulation of the GRANIT robot.

Figure 5: User interface based on the Chrono::Engine API.

7

Alessandro Tasora, Marco Silvestri and Paolo Righettini

7 CONCLUSIONS

Programmers can take advantage of the algorithm contained in the C++ application program-
ming interface of the Chrono::Engine in order to build applications featuring realistic simulation
of contacts, collisions, constraints, motors, mechanical devices and so on.

Based on Chrono::Engine middleware, also a full-featured application with user interface
has been developed, the CHRONO plug-in simulator, whose interface is depicted in Fig. 5.

8 ACKNOWLEDGEMENTS

Thanks to the staff at Realsoft OY, Finland, for supporting the plug-in implementation into
the Realsoft3D modeler.

REFERENCES

[1] R.Tonge, L.Zhang, D.Sequeira, AGEIA Technologies Inc. Method and program solving
LCPs for rigid body dynamics. US patent N.7079145 B2, 2006.

[2] B.Stroustrup. The C++ programming language. Addison-Wesley Longman Publishing
Co., USA, 1986.

[3] W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery. Numerical recipes in C++. Cam-
bridge University Press, 2003.

[4] D.R.Musser, A.Saini. The STL Tutorial and Reference Guide: C++ Programming with the
Standard Template Library. Addison-Wesley Longman Publishing Co., USA, 1995.

[5] A.Alexandrescu. Modern C++ design: generic programming and design patterns applied.
Addison-Wesley Professional, 2001.

[6] M.Anitescu, G.D.Hart. A constraint-stabilized time-stepping approach for rigid multibody
dynamics with joints, contact and friction. International Journal for Numerical Methods
in Engineering, 60(14), 2335-2371, 2004

[7] A.Tasora. An optimized lagrangian-multiplier approach for interactive multibody simula-
tion in kinematic and dynamical digital prototyping. Proceedings of VIII ISCSB, F. Casolo
(ed.), CLUP, Milano, 312, 2001, .

[8] A.Tasora, P.Righettini. Sliding contact between freeform surfaces. Multibody System Dy-
namics 10: 239–262, October 2003, Volume 10, Issue 3. ISSN 1384-5640, ed.Kluwer
Academic Publishers

[9] A.Tasora. An iterative fixed-point method for solving large complementarity problems in
multibody systems. Proceedings of GIMC 2006, XVI Congress of the Italian Group of
Computational Mechanics, Bologna, 26-28 June 2006

[10] A.Tasora. Chrono::Engine web site: www.deltaknowledge.com/chronoengine, 2006

[11] A.Tasora, P.Righettini, S.Chatterton. Design of the GRANIT parallel kinematic manipu-
lator. Proceedings of RAAD05, Bucharest May 26-28, 2005.

8

