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SOMMARIO Il presente lavoro, che si colloca nell’alveo delle ricerche su sistemi dinamici con 

elevato numero di contatti con attrito, intende presentare un originale metodo numerico in grado di 

risolvere il problema di complementarità lineare attraverso un’iterazione di punto fisso. Tale 

algoritmo esibisce le proprietà di una mappa contrattiva, fornendo una rapida approssimazione 

della soluzione al problema LCP anche in presenza di migliaia di vincoli monolateri. 

  

ABSTRACT Aiming at a fast and robust simulation of large multibody systems with contacts and 

friction, this work presents a novel solution method which can solve large complementarity 

problems by means of a fixed-point iteration. When thousands of unilateral constraints are added to 

the system, our method performs like a Banach contractive mapping, providing a fast monotonic 

approximation to the exact LCP solution. 

  

1. INTRODUCTION 

Mechanisms involving contacts and impacts between parts can be modeled in terms of 

multibody systems with unilateral constraints. The introduction of complementary inequalities in 

the dynamical model leads to complex LCP (linear complementarity problems), which must be 

solved at each simulation step [1]. If the simulation entails a large amount of contacts and rigid 

bodies, such as in the case of part feeders, packaging machines and conveyor belts, the 

computational burden of classical LCP solvers is unacceptable. In fact most common LCP solution 

algorithms are based on simplex methods [2], which may exploit a worst-case exponential 

complexity. Our experience showed that, in spite of deep optimizations [3], simplex methods still 

couldn’t practically handle multibody systems with more than one hundred of colliding bodies. 

             
Fig.1 A complex multibody system with many                     Fig.2  A benchmark: shaker with steel spheres 

         unilateral and bilateral constraints                                          (about 6500 unilateral constraints) 



 

 

Therefore, we developed a novel solution method, based on a fixed-point iteration, which can 

solve large complementarity problems with low computational overhead. In case of systems with 

bilateral constraints only, this method converges to a stationary Gauss-Seidel method with 

successive over-relaxations. When thousands of unilateral constraints are added to the system, our 

method performs like a Banach contractive mapping, providing a fast monotonic approximation to 

the exact LCP solution. 

With minimal modifications, our algorithm can handle three-dimensional Coloumb friction; 

hence, it is able to solve a true NLCP non-linear complementarity problem. 

 

2. THE MULTIBODY MODEL 

Dealing with multibody systems with joint constraint only, the dynamical system can be 

modeled as a DAE differential-algebraic system [4]. However, when unilateral constraints and 

friction are introduced, the non-smooth nature of the constraints requires the adoption of complex 

techniques: among these, we endorse the recent approach based on velocity-impulse differential 

complementarity [5]. That is, inequality constraints are enforced at the velocity level, by means of 

a linear-complementarity problem (LCP), and a time stepping method is used to solve the 

differential inclusions for the non-smooth dynamics.  

Lets introduce the state vector q, the bilateral constraint equations C(q,t)=0, the unilateral 

constraint equations D(q)�0, the respective constraint jacobians [Cq] and [Dq], the respective   

reaction impulses CC �∈�  and DD �∈� , the stabilization coefficient 0<K<1, the mass matrix 

[M] and the lagrangian forces QF. For sake of simplicity, here we discuss frictionless contacts only. 

For the l-th integration step h, we write the following differential-complementarity problem [3]: 
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The MLCP mixed-linear complementarity problem embedded in the first three rows of (1) can 

be expressed in a more useful form, introducing cqC
C
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where we used T
qq ][]][[][ 1

EMEN
−= and efMEr −= −1]][[ q

.  

After solving for 
E� , one can quickly compute  

 E
T

q
l

�EMfMq ][][][ 111 −−+ +=� . (2b) 
 

3. THE ITERATIVE METHOD 

The size of [N] in (2a) depends on the number of constraints. For more than one hundred 

constraints, this MLCP cannot be solved with simplex methods in reasonable time. Therefore we 

developed a fast O(n) iterative scheme which does not even need to store [N]. 



 

 

We define the following iteration: 

 [ ]( )( )r�NB�� +−= +
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 (3) 

where we introduced [B
r
], a diagonal matrix such that the spectral radius of [B

r
] [N] is 0<λ<1, and 

a projection mapping  f+ defined as follows: 

 ( )
�
�
�

≤∧∈=

∈∨>∧∈=
+

)0��(if0

�)0��(if�
�

iDi

iiDii
if

�

�� �  (4) 

THEOREM 2.1  The iterative process in (3) is a contraction mapping, and converges to the 

following unique fixed point: 

 [ ]( )( )r�NB�� +−= + EEE f ][ . (5) 

Proof. Say )( ET � is the mapping in (3), being �∈� with ),( d� complete metric space, then: 

[ ]( )( ) [ ]( )( )r�NB�r�NB��� +−−+−=− ++ yyxxyx ffTT ][][)()( . 

Also, it is easy to prove, remembering the definition of f+, that the following inequality holds: 

[ ]( )( ) [ ]( )( )r�NB�r�NB��� +−−+−≤− yyxxyx TT ][][)()( . 

Rearranging these terms, one gets ( )( )yxyx TT ��NBI�� −−≤− ]][[][)()( . 

By properties of norms, ||ab||�||a|| ||b||, then: 

( ) yxyx TT ��NBI�� −⋅−≤− ]][[][)()( . 

Recalling that, by hypothesis, the spectral radius of [B][N] is 0<λ<1, we can write:  

yxyx TT ���� −−≤− )�1()()( . 

Since  0<(1-λ)<1, by Banach contraction mapping theorem we have that (3) converges 

monotonically to an unique fixed point.  QED. 
 

THEOREM 2.2 Impulses 
E�  are solutions of the MLCP (2a) if and only if 

E� satisfies (5). 

Proof. For bilateral constraints, this is straightforward. For unilaterals, this can be easily 

demonstrated by considering that the outcome of (5) is verified for both the two cases of LCP 

solutions 
i� =0,αi>0 and i� >0,αi=0, being 

iiji rN += • �][α . The converse is left to the reader. 

 

4. IMPLEMENTATION 

Special care has been paid in exploiting the sparsity of jacobians and mass matrix: in fact the 

method does not require additional matrix elements, so it can run in O(n) space and O(n) time.  

Instead of explicitly computing [N]=[Eq][M]
-1

[Eq]
T
 in (3), we compute products between i-th 

rows of jacobians [E i, •] and mass matrix (whose inverse [M]
-1

 is immediate, if diagonal as usual). 

As matrix [B] we use the inverse of [N] diagonal (being [N] definite positive, it can be 

demonstrated that the method will always converge). This choice of  [B], along with improvements 

such as the immediate update of the n unknowns and the introduction of a speed parameter ω, leads 

to the final scheme which is similar to a ‘projected’ Gauss-Seidel or SOR method: 
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It is interesting to note that the amount of floating point operation can be minimized in many 

ways. For example, not all matrix multiplications must be repeated at each r-th iteration step. Also, 

remember that ( ) qfEM �=+� •
−

t
T

tt �][][
1 .The final, optimized algorithm is:  

 

Algorithm 4.1 

for all n constraints, pre-compute i-th values 
T
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Iterations, usually stopped when an approximation threshold has been reached, can be also 

prematurely aborted at rmax if the simulation must meet hard-real-time requirements.  

Since the algorithm belongs to the NC complexity class, it can be implemented also on parallel 

processors such as in the pipelines of modern GPUs or in synergic processors (like the Cell™).  

 

5. CONCLUSIONS 

Aiming at a linear-time solution of dynamical systems with thousands of constraints and 

contacts, a novel LCP solution method has been presented, implemented and tested. 

We implemented this method into the HyperOctant library of our Chrono::Engine multibody 

project [6]. Benchmarks proved that our iterative approach is orders of magnitude faster than 

simplex methods, and we were able to handle large simulations with thousands of colliding rigid 

bodies (see Fig.1 and 2). 
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