











## 07/02/2020



# Structure of this lecture

#### Sections

- Multibody Simulation: Concepts and applications
- Coordinate transformations
- Dynamics: Basic concepts on ODEs and DAEs
- Non-smooth Multibody Dynamics
- Collision detection
- Available software
- ProjectChrono
- Examples and applications
- Future challenges

#### Alessandro Tasor

4



# 2. MULTIBODY SIMULATION: CONCEPTS AND APPLICATIONS

Overview of multibody simulation

Alessandro Tasor

## Introduction

- Multibody methods:
  - Usually *general-purpose*: they can model many types of problems
  - Solve motion equations *automatically*
  - Should support an *arbitrary number* of parts, forces, geometries, constraints...
  - Most often use *numerical methods* to compute simulations
  - Often integrated in CAD tools, with GUI ( *graphical user interfaces*)



Alessandro Tasor













































### 16











# Rigid body motion

- Rotation in 3D nt as easy as in 2D...
- Problem: recovering 3 angles from matrix is not always possible (a singularity might happen...)
- A solution is to use quaternions (4 coordinates for rotation)
- Quaternion algebra makes kinematics easier.









## Quaternions

### • Conjugate:

|          | $\bar{q} = (q_0 + q_1i + q_2j + q_3k)$<br>$\bar{q}^* = (q_0 - q_1i - q_2j - q_3k)$                                                |                                                   |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
|          | $(\bar{a}^{*})^{*} = \bar{a} (\bar{a} \bar{b})^{*} = \bar{b}^{*} \bar{a}^{*} (\bar{a} + \bar{b})^{*} = \bar{a}^{*} + \bar{b}^{*}$ |                                                   |  |
|          | $\bar{q} \ \bar{q}^* = (q_0^2 + q_1^2 + q_2^2 + q_3^2)$ $\bar{q} \ \bar{q}^* = \bar{q}^* \ \bar{q} = s \in \mathbb{R}$            |                                                   |  |
|          | $\begin{split}  \bar{q}  &= \sqrt{\bar{q}\;\bar{q}^{*}} \\  \bar{q}  &= \sqrt{(q_0^2 + q_1^2 + q_2^2 + q_3^2)} \end{split}$       |                                                   |  |
| Inverse: |                                                                                                                                   |                                                   |  |
|          | $\bar{q}^{-1}\bar{q} = 1$                                                                                                         |                                                   |  |
|          | $\bar{q}^{-1} = \bar{q}^* \frac{1}{ \bar{q} ^2}$                                                                                  | $ \bar{q}  = 1 \implies \bar{q}^{-1} = \bar{q}^*$ |  |
| AL       |                                                                                                                                   |                                                   |  |

Alessandro Tasora











| Useful cor | versior                           | IS                                                                                                                            |                                                                                                                            |  |
|------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| 050101001  | 100101                            |                                                                                                                               |                                                                                                                            |  |
|            |                                   |                                                                                                                               |                                                                                                                            |  |
|            |                                   | Algebra dei quaternioni                                                                                                       | Algebra matriciale                                                                                                         |  |
| Tra        | asformazione                      | $\bar{p}' = \bar{q} \ \bar{p} \ \bar{q}^*$ , $\bar{p} = (0, \vec{v})$                                                         | $\vec{v}' = [A] \vec{v}$                                                                                                   |  |
|            | di coordinate<br>(solo rotazione) | $\dot{\bar{p}}' = \dot{\bar{q}}  \bar{p}  \bar{q}^* + \bar{q}  \bar{p}  \dot{\bar{q}}^* + \bar{q}  \dot{\bar{p}}  \bar{q}^*$  | $\dot{\vec{v}}' = [\dot{A}(q)]\vec{v} + [A(q)]\dot{\vec{v}}  [\dot{A}(q)] = [A(q)][\tilde{\omega}_l]$                      |  |
| (50        | io rotazione)                     | $\ddot{p}' = \ddot{q}\bar{p}\bar{q}^* + \bar{q}\ddot{p}\bar{q}^* + \bar{q}\bar{p}\ddot{q}^* +$                                | $\ddot{\vec{v}}' = [\ddot{A}(q)]\vec{v} + 2[\dot{A}(q)]\vec{v} + [A(q)]\vec{v}$                                            |  |
|            |                                   | $+2\dot{\bar{q}}\bar{p}\dot{\bar{q}}^*+2\dot{\bar{q}}\dot{\bar{p}}\bar{\bar{q}}^*+2\bar{\bar{q}}\dot{\bar{p}}\dot{\bar{q}}^*$ | $[\ddot{A}(q)] = [A(q)][\tilde{\omega}_l][\tilde{\omega}_l] + [A(q)][\tilde{\alpha}_l]$                                    |  |
|            |                                   | $\dot{\bar{q}} = \frac{1}{2} \left( 0, \vec{\omega}_o \right) \bar{q}$                                                        | $\dot{\bar{q}} = \frac{1}{2} [F(q^*)_{\ominus}]^T \vec{\omega}_o$                                                          |  |
| Da         | а $\vec{\omega}$ а $\hat{q}$      | $\dot{\bar{q}} = \frac{1}{2}\bar{q} \left(0, \vec{\omega}_l\right)$                                                           | $\dot{\bar{q}} = \frac{1}{2} [F(q^*)_{\oplus}]^T \vec{\omega}_l$                                                           |  |
|            |                                   | $(0,\vec{\omega}_o) = 2 \ \dot{\bar{q}} \ \bar{q}^*$                                                                          | $\vec{\omega}_o = 2 \left[ F(q^*)_{\ominus} \right] \dot{\bar{q}}$                                                         |  |
| Da         | $\dot{\bar{q}} \neq \vec{\omega}$ | $(0,\vec{\omega}_l) = 2\vec{q}^*\dot{\vec{q}}$                                                                                | $\vec{\omega}_l = 2 \left[ F(q^*)_{\oplus} \right] \dot{q}$                                                                |  |
|            |                                   | $\ddot{\vec{q}} = \frac{1}{2} (0, \vec{\alpha}_o)  \bar{q} + \frac{1}{2} (0, \vec{\omega}_o)  \dot{\vec{q}}$                  | $\ddot{\vec{q}} = \frac{1}{2} [F(\dot{q}^*)_{\ominus}]^T \vec{\omega}_o + \frac{1}{2} [F(q^*)_{\ominus}]^T \vec{\alpha}_o$ |  |
| Da         | ια̃а <u></u>                      | $\ddot{\vec{q}} = \frac{1}{2}\dot{\vec{q}}\left(0,\vec{\omega}_l\right) + \frac{1}{2}\vec{q}\left(0,\vec{\alpha}_l\right)$    | $\ddot{q} = \frac{1}{2} [F(\dot{q}^*)_{\oplus}]^T \vec{\omega}_l + \frac{1}{2} [F(q^*)_{\oplus}]^T \vec{\alpha}_l$         |  |
|            |                                   | $(0, \vec{\alpha}_o) = 2  \ddot{\bar{q}}  \bar{q}^* + 2  \dot{\bar{q}}  \dot{\bar{q}}^*$                                      | $\vec{\alpha}_o = 2 \left[ F(q^*)_{\ominus} \right] \vec{q}$                                                               |  |
| D          | äaα                               | $(0, \vec{\alpha}_l) = 2  \dot{\vec{q}}^*  \dot{\vec{q}} + 2  \vec{q}^*  \ddot{\vec{q}}$                                      | $\vec{\alpha}_l = 2 \left[ F(q^*)_{\oplus} \right] \ddot{\vec{q}}$                                                         |  |













































































## Differential problems

• Ordinary Differential Equations (ODE):

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{f}(\boldsymbol{x}, t)$$

• Differential Algebraic Equations (DAE):

$$\frac{d \boldsymbol{x}}{d t} = \boldsymbol{f}(\boldsymbol{x}, t)$$
 
$$\boldsymbol{g}(\boldsymbol{x}, t) = \boldsymbol{0}$$

- for  $oldsymbol{f}(oldsymbol{x},t)$  Lipschitz-continuous in x and continuous in t

• with prescribed initial boundary conditions

Alessandro Tasora





















































| The P-SPG-FB first order method                                                                  | ALGORITHM P-SPG-FB(A, b, $\mathbf{x}_0$ ,<br>$\mathscr{K}, P \mapsto \mathbf{x}_1$<br>$\mathbf{x}_0 := \Pi_{\mathscr{K}}(\mathbf{x}_0),  \mathbf{x}_{FB} = \mathbf{x}_0,$<br>$\hat{\alpha}_0 \in [\alpha_{min}, \alpha_{max}]$<br>$\mathbf{g}_0 := A\mathbf{x}_0 + \mathbf{b}, \ f(\mathbf{x}_0) = \frac{1}{2}\mathbf{x}_0^T A\mathbf{x}_0 +$                                                  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Our P-SPG-FB algorithm:                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>Based on the SPG method</li> <li>Extends Barzilai-Borwein spectral iteration</li> </ul> | $ \begin{aligned} \mathbf{d}_j &= \Pi_{\mathscr{X}}(\mathbf{x}_j - \dot{\alpha}_j \mathbf{p}_j) - \mathbf{x}_j \\ & \text{if } \langle \mathbf{d}_j, \mathbf{g}_j \rangle \geq 0 \\ & \mathbf{d}_j = \Pi_{\mathscr{X}}(\mathbf{x}_j - \dot{\alpha}_j \mathbf{g}_j) - \mathbf{x}_j \\ \lambda &:= 1 \end{aligned} $                                                                             |
| Uses GLL non-monotone line search                                                                | while line search<br>$\mathbf{x}_{j+1} := \mathbf{x}_j + \lambda \mathbf{d}_j$<br>$\mathbf{g}_{j+1} := A \mathbf{x}_{j+1} + \mathbf{b}$                                                                                                                                                                                                                                                        |
| <ul> <li>Improvements:</li> <li>Uses alternating step sizes</li> </ul>                           | $\begin{array}{l} f(\mathbf{x}_{j+1}) &= \frac{1}{2}\mathbf{x}_{j+1}^T A \mathbf{x}_{j+1} + \\ \mathbf{x}_{j+1}^T \mathbf{b} \\ \mathbf{if} f(\mathbf{x}_{j+1}) > \max  f(\mathbf{x}_{j+1}) + \end{array}$                                                                                                                                                                                     |
| • Uses diagonal preconditioning (with isothropic cone scaling) $P = \overline{\text{diag}}(A)$   | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Supports premature termination with<br/>fall-back strategy (FB)</li> </ul>              | else terminate line search $\mathbf{s}_j = \mathbf{x}_{j+1} - \mathbf{x}_j$                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Draws on three main computational primitives:</li> </ul>                                | $y_j = g_{j+1} - g_j$<br>if <i>j</i> is odd<br>$\hat{\alpha}_{j+1} = \frac{\langle s_j , P_{3j} \rangle}{\langle s_{j+1} \rangle}$                                                                                                                                                                                                                                                             |
| Matrix X vector multiplication                                                                   | $\begin{aligned} \alpha_{j+1} &= \frac{1}{\langle s_j, s_j \rangle} \\ else \\ \hat{\alpha}_{j+1} &= \frac{1}{\langle s_j, s_j \rangle} \end{aligned}$                                                                                                                                                                                                                                         |
| <ul><li>Vector inner product</li><li>Projection onto Lorentz cones</li></ul>                     | $\begin{aligned} & \alpha_{j+1} - \frac{\langle y_j, p^{-1} y_j \rangle}{\alpha_{j+1} = \min(\alpha_{\max}, \max(\alpha_{\min}, \hat{\alpha}_{j+1}))} \\ & \hat{\alpha}_{j+1} = \min(\alpha_{\max}, \max(\alpha_{j+1}, \alpha_{j+1})) \\ & w_{j+1} =   [x_{j+1} - \Pi_{\mathcal{X}}(x_{j+1} - \tau_g g_{j+1})] / \tau_g  _2 \\ & =   \hat{e}  _2 \\ & = \lim_{k \to \infty} w_k \end{aligned}$ |
| Alessandro Tasora                                                                                | $\mathbf{x}_{FB} = \mathbf{x}_{j+1}$ return $\mathbf{x}_{FB}$                                                                                                                                                                                                                                                                                                                                  |























## 07/02/2020































## <section-header><section-header><section-header><list-item><list-item><list-item><list-item>









### 73



|   | arrow                            | phases olutions                                  |                                      |                              |  |
|---|----------------------------------|--------------------------------------------------|--------------------------------------|------------------------------|--|
|   |                                  | number of prim<br>vs. sphere, sphe               |                                      |                              |  |
| • | Fastest appr                     | roach, but                                       |                                      |                              |  |
|   |                                  | al solution for e                                |                                      |                              |  |
|   |                                  | of primitives:                                   |                                      |                              |  |
|   |                                  | of primitives:                                   | Cylinder                             | Cube                         |  |
|   |                                  |                                                  | Cylinder<br>Sphere-Cylinder          | Cube<br>Sphere-Cube          |  |
|   | the number                       | Sphere                                           |                                      |                              |  |
|   | the number<br>Sphere             | Sphere<br>Sphere-Sphere                          | Sphere-Cylinder                      | Sphere-Cube                  |  |
|   | the number<br>Sphere<br>Cylinder | Sphere       Sphere-Sphere       Cylinder-Sphere | Sphere-Cylinder<br>Cylinder-Cylinder | Sphere-Cube<br>Cylinder-Cube |  |









# <section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

# Narrow phases

- Another solution for concave shapes: custom algorithm for triangle meshes
- Topological info (triangle connectivity) and watertight meshes needed for better robustness
- Implemented in ProjectChrono





# Middle phase

- If a shape is decomposed in many sub-shapes, the narrow-phase can still hit the  $O(n^2)$  issue...
- Solution: use a ...
- Middle phase
- Example:
- Uses BVh trees of AABB to manage objects with thousands of triangles or sub-convex shapes











### 07/02/2020











Alessandro Tasora

































### Multibody software • Our ProjectChrono middleware project: CHRONO HRONO ENGINE Multibody Dynamics Library • Middleware: can be used by third parties Efficient and fast, real-time if possible • Expandable via C++ class inheritance • Robust and reliable ٠ y take advar realistic sir tage of the advanced algorit ulation of contacts, collisic Embeddable in VR applications • Cross-platform • State-of-the-art collision-detection



| Features                                                                        |  |
|---------------------------------------------------------------------------------|--|
| Core features                                                                   |  |
| Platform independent                                                            |  |
| C++11 compliant                                                                 |  |
| CMAKE build toolchain                                                           |  |
| Optimized custom classes for vectors, quaternions, matrices.                    |  |
| Optimized custom classes for coordinate systems and coordinate transformations  |  |
| All operations on points/ speeds/ accelerations are based on quaternion algebra |  |
| Custom sparse matrix class                                                      |  |
| Linear algebra functions                                                        |  |
| Class factory and archiving                                                     |  |
| Smart pointers                                                                  |  |
| High resolution timers                                                          |  |
| •                                                                               |  |
|                                                                                 |  |

# Features

### Physical modeling

- Rigid bodies, markers, forces, torques
- Bodies can be activated/deactivated, and can selectively partecipate to collision detection.
- Set-valued Coloumb friction, plus rolling and spinning friction
- Parts can rebounce, using restitution coefficients.
- Springs and dampers, even with non-linear features
- Wide set of joints (spherical, revolute joint, prismatic, universal joint, glyph, etc.)
- Constraints to impose trajectories, or to force motion on splines, curves, surfaces, etc.
- Constraints can have limits (ex. elbow)
- Custom constraint for linear motors
- Custom constraint for pneumatic cylinders
- Custom constraint for motors, with reducers, learning mode, etc
- Brakes and clutches
- Conveyors

Alessandro Tasor

## **Features**

- Other features
- Different integrators: MDI timestepper, Euler, Verlet, HHT, Newmark, etc.
- Inverse kinematics, statics, non-linear statics
- Fast collision detection between compound shapes
- Handling of redundant and ill-posed constraints
- Integration with measure differential inclusions approach
- Genetic & local optimization
- Simulink co-simulation
- Geometric objects (NURBS, splines, etc.)
- Python wrapper and Python parsers
- 'Probes' and 'controls' for man-in-the-loop simulations
- Wide set of examples and demos
- Powertrain 1D simulation
- Multithreading and GPU support, etc.

lessandro Tasor

186





















| Example of Chro | no::Engine C++ code (3)                                                     |                  |  |  |  |
|-----------------|-----------------------------------------------------------------------------|------------------|--|--|--|
| // 4- TH        | E SOFT-REAL-TIME CYCLE, SHOWING THE SIMULATION                              |                  |  |  |  |
| // Th           | <pre>// This will help choosing an integration step which matches the</pre> |                  |  |  |  |
| // re           | // real-time step of the simulation                                         |                  |  |  |  |
| ChRealti        | meStepTimer m_realtime_timer;                                               |                  |  |  |  |
| while(de        | <pre>vice-&gt;run()) // cycle on simulation steps</pre>                     |                  |  |  |  |
| {               |                                                                             |                  |  |  |  |
|                 | <pre>// Redraw items (lines, circles, etc.) in</pre>                        |                  |  |  |  |
|                 | // the 3D screen, for each simulation step                                  |                  |  |  |  |
|                 | [++]                                                                        |                  |  |  |  |
|                 | HERE DRAW THINGS ON THE SCREEN; FOR EXAMPLE:                                |                  |  |  |  |
|                 | // draw the rod (from joint BC to joint CA)                                 |                  |  |  |  |
|                 | ChIrrTools::drawSegment(driver,                                             |                  |  |  |  |
|                 | <pre>my_link_BC-&gt;GetMarker1()-&gt;GetAbsCoord().pos,</pre>               | Demo_crank.exe   |  |  |  |
|                 | <pre>my_link_CA-&gt;GetMarker1()-&gt;GetAbsCoord().pos,</pre>               | Demo fourbar.exe |  |  |  |
|                 | video::SColor(255, 0,255,0));                                               | Demo_lourbar.exe |  |  |  |
|                 | []                                                                          | Demo_pendulum.e: |  |  |  |
|                 |                                                                             |                  |  |  |  |
|                 | // HERE CHRONO INTEGRATION IS PERFORMED!!!:                                 | Demo gears.exe   |  |  |  |









































































































## <section-header><text><list-item><list-item><list-item><text>





## Vehicle dynamics

Modelica-based real-time vehicle simulator

(in collaboration with Altair)



Alessandro Tasora



























## THANKS

Any question?

Contacts:

alessandro.tasora@unipr.it

http://projectchrono.org

Alessandro Tasora

## <list-item> Performance textbooks International dei sistemi multibody, Eds. Pennestri, Cheli, CEA, 2007 (Vol I) Dynamics of Multibody Systems, A.Shabana, Cambridge Press, 2008 Dynamics of Multibody Systems, E.Robertson, R.Schwertassek, Springer, 1988 Edward J. Haug: Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods (1989) Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, by U. Ascher and L. Petzold, SIAM, 1998 Solving Ordinary Differential Equations I: Nonstiff Problems, by E. Hairer, S. Norsett, G. Wanner, 1993 Solving Ordinary Differential Equations II: Stiff and differential-algebraic Problems (Second Revised Edition) by E. Hairer and G. Wanner, 2002 The Finite Element Method, O. C. Zlenkiewicz, R.L.Taylor, Butterworth-Heinemann; 6 edition (September 19, 2005) Vol I, II, III

