

4

Development of high per A. Tasora Diportiment

(*GPU*, contact-parallel) Contact preprocessing kernel. For each contact, given contact normal and position, compute in-place the matrices \mathbf{D}_{i,v_A}^T , $\mathbf{D}_{i,\omega_A}^T$ and $\mathbf{D}_{i,\omega_B}^T$, then compute η_i and the contact residual $\mathbf{b}_i = \{\frac{1}{\hbar} \Phi_i(\mathbf{q}), 0, 0\}^T$.

5

(GPU, body-parallel) CCP force kernel. For each body j, initialize body velocities: $\mathbf{\dot{r}}_{j}^{(l+1)} = h m_{j}^{-1} \mathbf{F}_{j}$ and $\omega_{i}^{(l+1)} = h \mathbf{J}_{j}^{-1} \mathbf{C}_{j}$.

