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Goal

Simulation of massive multibody system: a challenge

- large number of parts 

- large number of constraints

- large number of frictional contacts 

The 1600 forklifts benchmark
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Applications

Some examples

Granular flow in hopper

Example: hopper simulated with Chrono::Engine

50’000 spheres

• CPU time: 20 s / frame with our 

software Chrono::Engine

• Still acceptable on a single CPU
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Applications

Some examples

Granular flows in silos, mixers, etc.

Example: refueling cycle of a PBR nuclear reactor

180’000 spheres

• CPU time: 120 s / frame

• Still feasible on a single CPU, but slow

• Multicore CPU can help a bit..

• better with GPU multiprocessor

• Almost 2GB RAM needed



3

2015Development of high performance software for multibody mechanical simulations

A.Tasora, Dipartimento di Ingegneria Industriale, Università di Parma, Italy
slide n. 5

Applications

Some examples

Other examples, with massive number of particles:

• Interaction between buldozzer blade and sand, 

debris and pebbles,

• Powder compaction and blending in 

pharmaceutical engineering,

• etc.
A Stable Micro System powder-flow tester 

A Caterpillar D11 bulldozer

> 1’000’000 particles 

• Not practical on a single CPU, 

• better with a cluster of computers

• Possibly, each computer fitted with 

one or more GPU boards
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Parallel architectures overview 

Different possible approaches to parallelism:

• Multi-core processors (dual-core CPU, etc.)      

• Stream processors (GP-GPU & CUDA)      

• MPI and cluster of computers
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Part A

Multibody solver on multi-core multithreaded 
parallelism
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Multi-core multithreaded parallelism

Trend in CPU: add multi-core. Today, 2/4 cores. Tomorrow: 4,8,16, ..

Multi-cores allow at least nt threads (or fibers) to run in parallel:

With nc cores, maximum ncx expected speedup (ex. <2x speedup in dual core)

In Win/Posix/Linux, multithreading C++ API is done in similar ways.

Thread switching is almost instant (unlike process multitask switching)

All RAM memory can be shared among threads

Thread 2 Thread 2 Thread 1 Thread 2 Thread 2 Thread 1

Thread 1 Thread 1 Thread 3 Thread 1 Thread 3
CORE 1

CORE 2

CPU time
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Multi-core multithreaded parallelism

Problems caused by memory sharing in multithreading:

• RAM latency & cache misses: not a big problem, modern caches can 
hide this.

• Race conditions: since OS can switch threads ‘randomly’, the order of 
execution of parallel instructions can be non-deterministic

� need of synchronization tricks (ex. semaphores)

• Resource locking: double write access to the same address of shared 
RAM must be avoided! (even writing a 4-byte ‘float’ could be non-atomic and be ‘switched’ in-between).

� need of mutexes, or spinlocks, or semaphores

Thread 2 Thread 2 Thread 1 Thread 2 Thread 2 Thread 1

Thread 1 Thread 1 Thread 3 Thread 1 Thread 3
CORE 1

CORE 2

CPU time

RAM

OK DANGER!
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Multi-core multithreaded parallelism

• Luckily enough, a basic multi-threaded variant of our iterative 

solver can be easily implemented on multi-core CPU systems

• At each iteration, the loop over all constraints (the expensive 

part) is subdivided to multiple task: each task process a ‘batch’ 

of constraints in parallel

• Each update of constraint multiplier requires the update of the 

speed vector v (only for 6+6 elements relative to the two 

connected bodies), so there is the risk that two threads want to 

update the speed of the same body…

• This ‘conflict’ risk is very low if number of bodies is   nb >> nt

• Problem can be solved using spinlocks or mutexes

• Anyway the update of constraint multipliers can be ‘nondeterministic’ 
because the pace of thread execution is decided by OS…
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Multi-core multithreaded parallelism

Multithreaded version of the algorithm

PHASE 1.a:

bi= DiT =ηi= s i T = Var.A Var.B

T
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• All contacts are divided among 
nt threads

• Very simple: computations 
never overlap write addresses!

i-th contact

γi=
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Multi-core multithreaded parallelism

PHASE 1.b:

bi= DiT =ηi= s i T = Var.A Var.B

T
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i-th constraint

• All constraints are divided 
among nt threads

• Very simple: computations 
never overlap write addresses!

γi=
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Multi-core multithreaded parallelism

PHASE 2.a:

• All contacts are divided among nt

threads

• The results are 6+6 block-stores in 
speed vector, so there is the risk of 
WRITE CONFLICT!

bi= DiT =ηi= s i T = Var.A Var.B
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Multi-core multithreaded parallelism

PHASE 2.b:

• All constraints are divided among nt

threads

• The results are 6+6 block-
increments in speed vector, so there 
is the risk of WRITE CONFLICT!

[similar to PHASE 2.a – do not show graphs]
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Multi-core multithreaded parallelism

PHASE 2.c:

Here just remember that

(BTW: k can be pre-computed at the beginning,

or simplify adding ..+ v(l)+ h M   -1 f )
vj = f j = Mj =

Thread  1

Thread  2

j-th body

j=1

j=2

j=3

j=4

• All variables (bodies) are divided 
among nt threads

• Very simple: computations never 
overlap write addresses!
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Multi-core multithreaded parallelism

PHASE 3  (to be repeated for r= …rmax iterations):

bi= DiT =ηi= s i T = Var.A Var.B

T
h
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γi=
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O

N
T
A

C
T

S

• All contacts are divided among nt

threads

This first sub-step is easy: 
computations never overlap 
write addresses

vj =

j-th body

B
O

D
IE

S

READ

READ
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Multi-core multithreaded parallelism

PHASE 3  (to be repeated for r= …rmax iterations): • All contacts are divided among nt

threads

This second sub-step is easy: it is 
the projection onto friction cone
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Multi-core multithreaded parallelism

PHASE 3  (to be repeated for r= …rmax iterations): • All contacts are divided among nt

threads

This third sub-step is easy
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Multi-core multithreaded parallelism

PHASE 3  (to be repeated for r= …rmax iterations): • All contacts are divided among nt

threads

This fourth sub-step is similar to phases 2.a/2.b: 
results are 6+6 block-stores in speed vector, so 
there is the risk of WRITE CONFLICT!

bi= DiT =ηi= s i T = Var.A Var.B

T
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Multi-core multithreaded parallelism

PHASE 3  (to be repeated for r= …rmax iterations): • All constraints are divided among 
nt threads

(we do not discuss the loop on bilateral 
constraints because it is the same as the four 
steps detailed before)
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Multi-core multithreaded parallelism

How to avoid the possible write-conflicts in shared memory, introduced in 
Phases 2.a, 2.b and 3 (fourth step) ?

SOLUTION 0

Do nothing, and just do (atomic) updates of floating point values (atomic operations 
have very small overhead). Depends on processor architectures.

SOLUTION 1

Introduce a shared single mutex (called ‘critical section’ in Windows API) to be 
raised each time the v vector is written by some thread.

+ simple implementation
-- each single thread will halts all threads even when not needed

SOLUTION 2

Allocate nb mutexes, each per body. 

+ simple implementation, good performance

-- will waste RAM when dealing with thousands of bodies

Note: all those are not deterministic in SOR-like loops
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Multi-core multithreaded parallelism

How to avoid the possible write-conflicts in shared memory, introduced in 
Phases 2.a, 2.b and 3 (fourth step) ?

SOLUTION 3

Rewrite the algorithm so that performs the critical step using parallel reduction for 
each buffer of summation terms for each constraint  (see later, in GPU section)

+ does not waste RAM

++ maximizes the use of parallelism

+   deterministic, in GJ-like loops

-- difficult to implement in general

+  easy to implement if each body 
has on average the same number 
of contacts
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Multi-core multithreaded parallelism

Equivalent K matrix: 

Thread 1       
Thread 2   
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

…
…
…

Single thread (basic SOR)

Better convergence – use 
immediately the computed 
multipliers within the same 
iteration.

Multi-threaded block-SOR

(Ex. 3 threads, with shared variables, and 

assuming immediate and synchronized 

update of variables at each impulse update) 

Not so bad… Similar to the plain SOR.

Remember that ‘unknowns’ are triplets of 
multipliers, in case of contacts – see zoom detail.

Single thread Jacobi

Slow convergence – do not 
exploit the knowledge of new 
multipliers until next iteration.

On N-core processors, each NxN block is like a small Jacobi problem
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Example

A benchmark for PBR reactor 
refueling cycle 

100’000 Uranium-Graphite spheres

Dual-core system

Almost 2x speedup in CCP solver, 
using a 2-core Pentium (it scales 
linearly).
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Part B

Multibody solver on GPU parallel architecture
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GPU parallel computing

• GPU, Graphical Processor Units = “stream processors”1

already used in hi-end gfx boards for pixel 
shading in realtime OpenGL 3D views. 
1Once known as “fragment processors”.

• One GPU = cluster of N “stream processors”

• Recent GPU have floating-point stream processors.. 
Why not using them for physics?

� Can be used for general purpose 
parallel computation!
(GP-GPU = General Purpose GPU)

Note: multiple GPU?  Maybe..
(ex: 4x128=512 stream processors)
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GPU parallel computing

Exploit GPU parallel processing

• Current NVIDIA GPU boards (Fermi, Tesla) feature hundreds of multiprocessors 
(cores), allowing more than 4 TFlop on a cheap desktop system.

• Anyway, RAM on the GPU is not unlimited: ex. < 1’000’000 bodies on a 2GB GPU.
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GPU parallel computing

Example: a complex real time simulation, HAVOK tech demo (2006) on ATI X1950 GPU
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GPU parallel computing

Performance: > 4 TFLOP with recent GPU processors  !!!

A single GeForce™ GPU board is as 

powerful as four ASCI-RED 1996 supercomputers!
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GPU parallel computing

• SIMT (non-VonNeumann) architecture: 

Single Instruction  (“kernel”)  on..

Multiple Threads   (“stream”)

• High internal memory bandwidth, 
(but CPU �GPU bottleneck)

• Hundreds of stream processors at low cost

• Our iterative method for multibody can fit well into a 
parallel SIMD implementation…
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GPU parallel computing

The CUDA solution by NVIDIA, on G80 + multiprocessors.
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GPU parallel computing

The CUDA solution by NVIDIA, on G80 + multiprocessors.
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GPU parallel computing

Our CUDA implementation leverages GPU parallelism

Goal: parallelize the main iteration of the CCP 
complementarity solver:
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GPU stream-kernel parallelism

We adopt the CUDA SDK to develop C++ code which can easily 

exploit the capabilities of the G80 boards from NVIDIA.

• With CUDA, one can write ‘kernels’ (functions executed in parallel) in 

C-like language. 

• Kernels are executed in ‘blocks’ of parallel threads.

• Multiple blocks can be arranged in ‘grids’

Host (PC) Device  (GPU)

Kernel Grid

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block (2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)
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GPU stream-kernel parallelism

Memory issues..

Not all memory write/reads are cost-less

On G80 boards :

- Global memory:  >1Gb of DRAM  (but >100 clock cycles of write/read latency)

- Shared memory: few kBytes per multiprocessor, but no latency

Shared memory has limitations:

• A shared memory cache per thread block � blocks cannot communicate

• Shared memory cache is limited in size (16kBytes on G80 boards)

Use it as much 
as possible!

Stream processors

Multiprocessor

Stream processors

Multiprocessor

GPU
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GPU stream-kernel parallelism

Relevant design constraints

• How many threads per thread block?  Max 512 (hardware limit)

Too many threads: waste the shared memory cache. 

Too few threads: multiprocessors cannot hide global memory latency.

Suggested:  128 threads per block or more.

• How many thread blocks per grid? 

At least as many as available multiprocessors (ex. 12 on 8800 GT)

Suggested: 100 blocks per grid or more.
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Data structures in GPU

The buffer of rigid bodies

Position in reduction buffer

Velocity

Angular velocity

Position

Rotation (quaternion)

J inertia and mass

Applied force

Applied torque
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Data structures in GPU

The contact buffer

Residual (penetration)

Body A index

Body B index

Friction

Multipliers (contact force)

Jacobian (translation)

Jacobian (rotation)

Jacobian (rotation)

(auxiliary data)
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Data structures in GPU

Optimization: compute contact jacobians on-place

• Vectors n, sA, sB, and indexes BA, BB are feed from 

from collision detection engine

• Jacobian computation is an embarassingly-parallel 

operation
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Data structures in GPU

The buffer of bilateral constraints

Body A index

Body B index

Multiplier (reaction force)

Jacobian (translation, A)

Jacobian (rotation, A)

(auxiliary data)

Jacobian (translation, B)

Jacobian (rotation, B)

Residual (violation)

Example:

1 Revolute joint � 5 scalar bilateral constraints
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Data structures in GPU

The reduction buffer

• Primal (velocities) update may cause
write-conflicts when done in parallel! 

• A reduction buffer avoids that N 
constraints might write to the same 
body data during constraint-parallel 
GPU code.

• Multiple updates to the same body are 
stored in the reduction buffer, then a 
following “reduction kernel” will sum 
them efficiently.

• Note: same scheme for contact-
parallel code.
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Reduction

Can reduction be performed efficiently in parallel? 

• Reduction roughly means ‘sum all the values in a vector’

• Reduction on parallel architecture is
not as easy as in serial architectures

• To keep all stream processors busy, an 
efficient parallel implementation must exploit
the ‘binary tree’ concept at the right:

• Avoiding uncoalesced / misaligned memory 
access (otherwise performance might be 
memory-bandwidth limited)
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Reduction

The parallel reduction, in case of many bodies

• For each body there could be a single 
parallel-reduction problem!

• Better perform all reduction problems
at once, to keep all processors busy.

• RMVLA: Reduction of Multiple Variable
Length Arrays - our custom algorithm

• Some parallel reductions could take 
more steps than others. Reason: some 
body might touch 8 other bodies, but 
another body might touch 100 other 
bodies, etc. This issue is automatically
managed by the hardware thread 
scheduler, at a cost of few divergence.

2015Development of high performance software for multibody mechanical simulations

A.Tasora, Dipartimento di Ingegneria Industriale, Università di Parma, Italy
slide n. 44

GPU algorithm pseudocode

For each time step do:

1

2

3
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GPU algorithm pseudocode

4

5
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GPU algorithm pseudocode

6 a

6 b

6 c

6 d



24

2015Development of high performance software for multibody mechanical simulations

A.Tasora, Dipartimento di Ingegneria Industriale, Università di Parma, Italy
slide n. 47

GPU algorithm pseudocode

7

8

end

2015Development of high performance software for multibody mechanical simulations

A.Tasora, Dipartimento di Ingegneria Industriale, Università di Parma, Italy
slide n. 48

GPU – CPU bottleneck

The proposed algorithm requires lot of data bookkeeping (upload 

to and download from GPU has a limited bandwidth!)

DEVICE  (GPU)

UPLOAD

� OPTIMIZATION! 

•leave body data on the GPU – minimal transfer from/to CPU

•compute contacts on directly on GPU (but requires a GPU collision engine)

bi= DiT =ηi= s i T = Var.A Var.Bγi=

C
O

N
T
A

C
T

S

µi=

HOST (PC)

vj = f j = Mj =

B
O

D
IE

S

HOST (PC)

UPLOAD
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Misc

Some spare thoughts…

1. Why SOR (immediate update of variables) behaves so better 
than plain Jacobi, when doing multibody?

• An intuitive example: an object with many redundant contacts with ground:

• For Jacobi, the higher the redundancy, the lower the needed ω
relaxation; but low relaxation = slow convergence.

• Looks like that with SOR we can use larger ω values.. 

?

v -

I1 I2

I3

v - v - v -

v +

1° contact ……..2° contact …   3° contact ….    END OF ITERATION

Ops… a smaller relaxation 

value ω was needed…JACOBI

I1

I2 I3

v -

v’ – v’’ – v + 

1° contact ……..2° contact …   3° contact ….    END OF ITERATION

Good! (regardless of how many 
constraints were redundant)

SOR
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Misc

2. How to manage more than 1 Million of bodies? 
A single GPU with 2GB of RAM is not enough… 

• Multiple GPUs: already possible… 

• ..But at each CCP iteration some data should be moved from GPU to GPU 

• Possible bottleneck!

• Workaround: topological or geometrical partitioning of the problem: data 
interdependency is minimized (transfer only data for shared bodies/contacts)

• Still, GPU to GPU memory transfer at each CCP iteration would hit too much the 
performance.

• Further improvement: transfers less frequent than CCP iteration: ex as in 
addictive Shwartz preconditioner.
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Misc

3. Bad performance of the solver in case of dense high stacks

• Typical problem of all fixed-point solvers!

• Convergence ‘stalls’ after initial good iterations

• Metaphor: how to propagate an effect over a long chain of bodies?

Solution

Algebraic Multigrid (AMG) for CCP ?

• How to avoid fill-in of jacobians during Galerkin densification?

• How to manage the nonlinearity caused by cone projection?

• How to implement it in a GPU-friendly way?

A challenge… One should aim at:

• Reuse data structures when possible

• Avoid divergence

• Etc..        (Work in progress…) 
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Conclusion

New algorithm for GPU parallel computation of multibody systems

Performance improvement of more than 20x !

Future improvement: multiple GPUs.

Applications: 

• vehicles on granular flows, 

• mixers for pharmaceutical industries, 

• PBR nuclear reactors, 

• real-time simulators (VR, games) 

• etc.
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Part C

Multibody solver on heterogeneous parallelism
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Supercomputing

Ex: MIRA supercomputer at 

Argonne National Labs 

• 10-petaFLOPS

• 786,432 processors

• power: 3.9 MW
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Heterogeneous parallelism

A solution for very large multibody problems:

• use a cluster of computing nodes
connected with Infiniband..

• ..each computer fitted with one 
or multiple GPU boards

� MPI is used to handle the 

node-level parallelism

� CUDA is used to handle the     

GPU-level parallelism
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Heterogeneous parallelism

Our heterogeneous 
cluster (at University 
of Wisconsin, Madison 
SBEL labs)
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Heterogeneous parallelism

• OS: Scientific Linux 6.2

• Peak Flop Rate [Single Precision]: 86.7 Teraflops (GPU)

• Peak Flop Rate [Double Precision]: 11.5 Teraflops (GPU), 10.0 Teraflops (CPU)

• 1 x Head Node

• 14 x GPU Compute Nodes

• 16 x CPU Compute Nodes

• 40 x NVIDIA GeForce GTX 480 GPUs

• 8 x NVIDIA GeForce GTX 680 GPUs

• 3 x NVIDIA Tesla C2050 GPUs

• 5 x NVIDIA Tesla C2070 GPUs

• Interconnect: Gigabit Ethernet, Infiniband

• Infiniband Switch: QLogic 12200-BS01
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Problem…

How to implement the iterative CCP solver on a cluster ?

Easy solution: use Schwarz alternating process

• Solve subdomain problems independently 

• Broadcast updated boundary values to other domains via MPI

• Repeat

How to handle domain decomposition?
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Definitions

A graph:

Order                           size

Vertices

Edges 

v1

v2

v3

v4

e1

e2

e3

e4
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Network topology

Nodes= computers, 

switches, etc.

Edges= wiring

Network topology is 

mostly transparent to the 

programmer

Anyway, its topology can

affect performance (data starving)
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Computing topology

Nodes= computing hardware

(CPU cores and/or 
GPU thread processors)

Edges= communication 

(MPI messages, CUDA
data flow, etc)

The computing topology

must be implemented 

via software

Two options shown here
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Mechanical topology

Example: a mechanical system with bodies and contacts
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Dual hypergraph

Nodes= constraints and contacts

Edges= bodies 

Non-oriented hyper-graph (a clutter)

Graph

Nodes= bodies

Edges= constraints and contacts 

Non-oriented multi-graph (nonsimple)

(Gaifman graph)

Mechanical topology
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Shur-matrix graph

Nodes= dual variables γ (contacts)

Note: Ts is the line graph (covering 
graph) of the mechanical graph:

KKT-matrix graph

Nodes= dual and primal 

variables v and γ

‘Algebraic’ topology
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Domain partitioning

Perform additive Schwarz by partitioning 

One Schwarz iteration
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Domain partitioning

Perform additive Schwarz by partitioning 

One Schwarz iteration
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Domain partitioning

Optimization:

• There is no need of transmitting shared contact γ’s  via MPI

• Just transmit the summed effect of the γ’s on the shared bodies:

• This is more efficient from a data-structure point of view…

ζ|b2,2

ζ|b2,1

This is a ‘building block’ of 
inner loops of most 
solvers

2015Development of high performance software for multibody mechanical simulations

A.Tasora, Dipartimento di Ingegneria Industriale, Università di Parma, Italy
slide n. 68

Domain partitioning

Basic: Optimized:

ζ|b2,2

ζ|b2,1
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Domain partitioning

But… how to obtain optimal graph partitioning? 

• minimal graph cut

• in general: optimally balanced between processors

The mechanical topology changes at each time step…

Use k-way partitioning?   � impact on CPU time

Use spectral methods?    � impact on CPU time

We accept (sub-optimal) Cartesian partitioning.
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Domain topology

Fast partitioning can be based on 3D Cartesian domain decomposition

• Not necessarily cubic
(K.Iglberger et al.: hexagonal prisms, etc.)

• Almost optimal for 

granular problems

• Just use body’s AABB to build

shared body lists

• Note: not optimal for odd

size ratios

Example (in 2D)
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Domain topology

• Shared cut bodies:
transmit impulses on them

• Shared outer constraints:
our iteration does not need them!
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Implementation issue

Note: shared bodies have different indexes (and pointers) in two 
neighboring domains… How to efficiently serialize-deserialize MPI data 
in case of multiple shared bodies?

Ω1 Ω2

1
2

3

4

5
1

2

3

4

56

7

ζ|b2,1

ζ|b3,1

ζ|b4,1

ζ|b5,1

ζ|b2,2

ζ|b3,2

ζ|b4,2

ζ|b6,2

Id est: how to do this mapping efficiently?
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Implementation issue

• Trick: in each domain, sort the vectors to be sent via MPI according to 
body’s global unique identifiers. 

• Index mapping is simply one-to-one after receiving.

• Sorting is very efficient on GPUs. 

Ω1 Ω2

301
401

231

217

508

634231

217 ζ|b4,1

231 ζ|b3,1

401 ζ|b2,1

508 ζ|b5,1

217 ζ|b3,2

231 ζ|b6,2

401 ζ|b4,2

508 ζ|b2,2

401

217

508
111

824
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Domain decomposition results

Performance improvements thank to better subdomain solvers:

- projected GS / Jacobi

- projected MINRES,

- etc.
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Domain decomposition results

Example (2 domains, 1 shared body)

Exact subdomain solutions
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Domain decomposition results

Example (2 domains, 1 shared body)

Incomplete subdomain solutions, warm started
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Domain decomposition results

Example (2 domains, 3 shared body)

Incomplete subdomain solution, warm started, larger overlapping
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