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Abstract

This document presents some insights about the Chrono::Engine implementation
of the chrono::fea::ChElementBeamIGA three-dimensional beams based on the Iso-
geometric Analysis (IGA) approach.

This formulation, published in [41], allows a geometrically exact three-dimensional
beam which can be used in dynamical simulations involving large displacements, col-
lisions and non-linear materials.

1. Introduction

(NOTE: This whitepaper is based on the paper published in [41], please refer
to it for citing, and for additional information).

While traditional FE methods discretize the continuum using finite elements
that share end nodes, the IGA approach uses splines that span several nodes [22,
12].

Among the vast literature on IGA, we cite [13, 8, 43, 7, 6, 15, 42].
In this document we use IGA to implement a geometrically exact three-

dimensional beam based on the Cosserat rod theory, hence capable of arbitrary
large rotations and displacements [24]. In Chrono::Engine we already provide
corotational beam elements of Eulero-Bernoulli 3D type. In contrast to the
corotational method, but at the cost of a more sophisticated formulation, the
geometrically exact beam model also known as Simo-Reissner beam model, draws
on the theory of 1D Cosserat continua [11] and leads to a general formulation
that makes no assumption on the amount of rotations and that allows finite
strains, including shear and torsion [37, 2, 38]. The Cosserat rod theory can be
considered a generalization of Reissner, Kirchhoff-Love, Timoshenko and Euler-
Bernoulli beams.

Although some beam theories that consider out-of-plane and in-plane defor-
mations of the cross-sections, we will make the assumption of rigid sections.
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Among the IGA works related to beams, here we cite in passing: [20, 46, 9,
14, 3]. Additional work on IGA beams in problems that involve contacts can be
found in: [48, 49, 30, 29, 10, 18, 27, 34, 35, 45, 47, 44].

The IGA beam here discussed is implemented in Chrono::Engine [33] as the
chrono::fea::ChElementBeamIGA class, and derivatives.

NOTE: The theory presented here has been published in [41], ie. the arti-
cle ”A geometrically exact isogeometric beam for large displacements and con-
tacts”, Computer Methods in Applied Mechanics and Engineering, Vol.358, pag.
112635, 2020. doi: 10.1016/j.cma.2019.112635. Please cite [41] instead of this
whitepaper, which is continuously updated.

2. B-Splines and NURBS

A brief introduction on splines, motivated by the fact that our IGA model
is based on Basis splines (B-Splines) or Non-Uniform Rational B-Splines
(NURBS).

2.1. B-Splines

A B-Spline of order p is a piecewise polynomial function of degree p-1 in a
parametric variable τ ∈ R (a curvilinear abscissa).

We introduce a set of n+1 control points xi ∈ R3 i = 0...n and a set n+p+1
of non-decreasing breaking points defining a knot vector T = (τ0, τ1...τn+p).

Basis Functions Ni,p is an order p and p-1 degree Basis Function on the
i-th knot of the B-Spline and it is recursively defined as follows:

Ni,1(τ) =

{
1 for τi ≤ τ ≤ τi+1

0 otherwise
(1)

And, for p > 1:

Ni,p(τ) =
τ − τi

τi+p−1 − τi
Ni,p−1(τ) +

τi+p − τ
τi+p − τi+1

Ni+1,p−1(τ) (2)

Basis Function are a partition of unity: it means that
∑n
i=0Ni,p(τ) = 1 ∀τ ∈

[τo, τn]. The span of Basis Function increases with the order p.
Is useful to remind the derivative of the Basis Function with respect to the
parametric variable since it is frequently used:

N̊i,p(τ) =
dNi,p(τ)

dτ
=

p− 1

τi+p−1 − τi
Ni,p−1(τ)− p− 1

τi+p − τi+1
Ni+1,p−1(τ) (3)

B-Splines formulation A B-Spline is a linear combination of control points
xi and Basis Functions Ni,p(τ)

r(τ) =

n∑
i=0

xiNi,p(τ) n ≥ p− 1 (4)
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Given the number of control points n+1 and the order of the curve p the number
of knots is n + p + 1, which means there are more knots than control points,
so some knots can be coincident on the same control point. When knots are
distinct the first p− 1 derivatives are continuous; when r nodes are coincident,
only the first p− r derivatives are continuous. In general, control points do not
lie on the curve. When p knots are coincident, the spline passes through the
control point with C0 continuity.

2.2. NURBS

Non-Uniform Rational B-Splines introduce additional weights wi > 0, (i =
1...n), so that rational basis Ri,p(τ) are used in place of Ni,p(τ):

Ri,p(τ) =
Ni,p(τ)wi∑n
j=1Nj,p(τ)wj

(5)

NURBS have the same properties listed for B-Splines: in particular for wi =
1 ∀i, NURBS reduce to B-Splines. In addition, by using proper weights and few
coarse control points, NURBS allow the exact (not approximated) representa-
tion of conic sections like circles and ellipses; this is a relevant feature because
canonical primitives in CAD models are most often built from conical sections.

3. Rotations

We will make use of rotation in 3D space. This requires some forewords on
rotations using concepts of Lie groups.

� A Lie group is a group G that is also a differentiable manifold. As a
group it is an algebraic structure with properties of closure, associativity,
presence of identity element and inverse element for product between its
elements. Examples:

– Rn, the Euclidean space with addition,

– GL(n,R), the general linear group of invertible nxn matrices and their
product,

– SL(n,R), the special linear group of matrices with det = 1,

– SO(n), the special orthogonal group of orthogonal matrices with
det = 1,

– SU(n), the special unitary group of complex matrices with det = 1,

– H1, the group of unit-length quaternions, also compact symplectic
group Sp(1),

– Spin(n), the spin group.

For kinematics and dynamics, the SO(3) special orthogonal group is im-
portant as it deals with rotation matrices in 3D space.
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� For rotations in 2D, a rotation α can be expressed by a unit-length complex
number eiα in the C1 group, also U(1), and Spin(2). Topologically this is
the circle S1. All them are isomorphic to SO(2).

� For rotations in 3D, H1, SU(2) and Spin(3) are all isomorphic, and simply
connected. All them are topologically the S3 sphere. All them are double
covers of SO(3), which is double connected. A practical consequence: two
opposite quaternions −ρ and +ρ ∈ H1 represent the same single rotation
matrix R ∈ SO(3).

� We use quaternions H1 to parametrize SO(3) rotations. We recall the basic
properties of quaternions: ρ = ρ0 + iρ1 + jρ2 + kρ3 with i2 = j2 = k2 =
ijk = −1, often written succinctly ρ = [ρs,ρv] to facilitate the expression
of quaternion multiplication:

τρ = [τsρs − τ v · ρv, τsρv + ρsτ v + τ v × ρv] (6)

� If needed, one can convert quaternions into rotation matrices, as Ri =
R(ρi), using the following property:

R(ρ) =

ρ2
0 + ρ2

1 − ρ2
2 − ρ2

3 2(ρ1ρ2 − ρ3q0) 2(ρ1ρ3 + ρ2ρ0)
2(ρ1ρ2 + ρ3ρ0) ρ2

0 − ρ2
1 + ρ2

2 − ρ2
3 2(−ρ1ρ0 + ρ2ρ3)

2(ρ1ρ3 − ρ2ρ0) 2(ρ1ρ0 + ρ2ρ3) ρ2
0 − ρ2

1 − ρ2
2 + ρ2

3

 (7)

� We denote the quaternion conjugate as ρ∗, with ρ∗ = ρ0−iρ1−jρ2−kρ3,
such that R(ρ∗i )R(ρj) = R(ρi)

TR(ρj).

� A Lie algebra is a vector space g equipped with a non-associative alter-
nating bilinear map g× g→ g; (x, y) 7→ [x, y], named Lie bracket.

� Given a Lie group G, the tangent bundle at the identity T1G, together
with a Lie bracket, forms the Lie algebra g of the Lie group G. Examples:

– the Lie algebra of U(1) is u(n), isomorphic to R;

– the Lie algebra of SO(n) is so(n), the algebra of skew-symmetric nxn
real matrices,

– the Lie algebra of H1 is Im(H), the algebra of pure quaternions
(quaternions with no real part),

– in particular, the Lie algebras of SO(3), SU(3), Spin(3) and H1 are all
isomorphic to the Lie algebra so(3), the algebra of skew symmetric
3x3 matrices ã such that ãb = a× b.

� Let γ : R→ G be a one parameter sub-group of G, i.e. for which γ(0) = I,
the identity element in G. The exponential map exp : g → G is defined
as exp(ω) = γ(1), for ω ∈ g. One can see that exp(tω) = γ(t), and that
γ̇(0) = ω. In practical terms, the exponential map connects elements in
Lie algebras to underlying Lie groups.
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� For an element R in Lie group SO(3) and an element δΘ in the corre-
sponding Lie algebra so(3), one has

R = exp(δΘ) (8)

δΘ = log(R) (9)

� One can extract the three dimensional rotation pseudovector δθ from δΘ
and vice versa, via

δθ = axis(δΘ) (10)

δΘ = skew(δθ) = δθ̃ (11)

For our purposes, δθ can be considered a (not necessarily infinitesimal)
incremental rotation; for example in a time stepper it could be δθ = ωdt.

� Just like in (8) and (9), an exponential map links H1, (unit quaternions),
and its Lie algebra Im(H) of pure quaternions δρ = [0, δθ]:

ρ = exp(δρ) (12)

δρ = log(ρ) (13)

� We can define two operators to convert pure quaternions from and to
rotation pseudovectors:

δθ = imag([0, δθ]) (14)

[0, δθ] = pure(δθ) (15)

� The exponential map (12) can be explicitly computed from δθ as ρ =
exp(pure(δθ)) using the following closed-form expression:

ρ = exp([0, δθ]) =

{
cos

(
||δθ||

2

)
,
δθ

||δθ||
sin

(
||δθ||

2

)}
(16)

4. Kinematics of Cosserat rods

Our implementation of IGA beams draws on the Cosserat rod theory. This
implies that the rotation of the beam section is independent from the centerline
position. This differs from the Euler-Bernoulli or Kirchhoff beam theory which
implies that sections remain orthogonal to the centerline, an assumption that
holds only for thin beams, because shear effects cannot be modelled.

4.1. Configuration

A Cosserat beam is represented by the line of its mass centroids (centerline),
which is described by a curve parameterized [47] by a curvilinear abscissa s ∈
[0, T ]:

r = r(s) ∈ R3 (17)
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Section rotations R are parameterized by the same curvilinear abscissa s ∈
[0, T ] (even though not mandatory [3] ), assuming that the X axis of the R
frame represents the normal of the beam section, and Y and Z axes represent
the height and width directions, respectively:

R = R(s) ∈ SO(3) (18)

That is, at some point sa along the curve we have independent positions and
rotations: r(sa), R(sa).

We remark a first source of complication: R is a 3D rotation matrix, that
is a 3x3 orthogonal matrix (hence the special orthogonal group SO(3) in the
terminology of Lie groups). Its 3x3 elements are not independent as RRT = I
must hold: in general it is better to avoid using all nine elements of such matrix
and use quaternions or rotation angles to parameterize rotation frames [28].

4.2. Strains

Following [39], we can express ε and κ, hereafter called translational strains and
rotational strains, respectively. The translational strain ε is:

ε = RTr′ − ex (19)

where we introduced ex = {1, 0, 0} and we introduced the curve gradient

r′ =
dr

ds
. (20)

Note that for an undeformed beam we have RTr′ = {1, 0, 0}, that is we
assume that s is a uniform arc-length parameterization. Is other words, at
the initial state, the curvilinear length of a curve from s = a to s = b, i.e.

L =
∫ b
a
||r′||ds, is exactly b−a. Usually, however, splines are not parameterized

with uniform arc-length abscissa, because a generic abscissa τ is used instead.
If so, we have

r′ =
dr

dτ

dτ

ds
= r̊J−1 (21)

where a jacobian is defined as Jsτ = ds
dτ , and r̊ = dr

dτ is the parametric derivative
(something that is quite easy to compute when dealing with splines).

During an initialization phase, when the beam is still undeformed, values of
jacobians Jsτ are computed and stored in memory for all the integration points
- they will be used later, when computing the internal forces.

The rotational strain κ is computed as [47]:

κ̃ = RTR′ (22)

Here R′ = dR
ds , while the tilde operator means:

κ̃ =

 0 −κz κy
κz 0 −κx
−κy κx 0

 (23)
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so it is obvious that one can build κ from κ̃ or vice versa.
Finally, in case the beam starts in an initially-curved configuration, initial

values ε0 and κ0 can be computed using the expression above, then one would
compute effective strains with:

ε = ε− ε0 (24)

κ = κ− κ0 (25)

4.3. Constitutive model

Once ε and κ are computed, with some generic constitutive model one can
compute their conjugate vectors, i.e. the generalized cut-section forces n and
cut-section torques m, henceforth called translational stresses and rotational
stresses, respectively. The most generic constitutive model is expressed by a
non-linear function:

{ε,κ} ∈ R6 → {n,m} ∈ R6 (26)

Note that n and m are expressed in the local coordinate system of the
section frame: if one needs the absolute values of such vectors, they can be
computed easily, later, as

na = Rn (27)

ma = Rm (28)

When structural damping is needed, instead of (26) we use:

{ε,κ, ε̇, κ̇} ∈ R12 → {n,m} ∈ R6 (29)

by introducing the strain derivative as ε̇ and the curvature derivative as κ̇.
See section (8) for more details on the methods for computing generalized

strains.

4.4. Equilibrium

The strong form for the equilibrium of the Cosserat beam is:

n′a + na = 0 (30)

m′a + r′a × na +ma = 0 (31)

where, if provided, na is the external force distributed on the beam, and ma is
the external torque distributed on the beam, both expressed in absolute coor-
dinates. The subscript a means we are using absolute coordinates for r′ too.
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Figure 1: Spline discretization of the beam with independent position and ro-
tation fields.

5. Discretization with IGA elements

The beam is approximated with IGA. To this end we assume that the beam is
represented as a B-spline whose control points are nodes, each i-th node being a
coordinate system {xi,Ri} with position xi ∈ R3 and rotation Ri ∈ SO(3), as
shown in Fig. 1. For the rotation, however, we choose to parameterize rotation
matrices R using unit-length quaternions ρ ∈ H1, so the configuration of each
node is a compact set of 7 scalars: {xi,ρi}.

5.1. System state vectors

The state of the system contains velocities and angular velocities of each frame
{ẋi,ωi}. We consider ωi expressed in frame-local coordinates.

This means that the state of the system, for nn nodes, is given by the
system-level configuration q and the system-state velocity v as:

q = {x1,ρ1,x2,ρ2, . . . ,xnn
,ρnn

} (32)

v = {ẋ1,ω1, ẋ2,ω2, . . . , ẋnn
,ωnn

} (33)

In both statics and dynamics analysis it happens that one has to update
by updating the q configuration by applying some computed increment. For
instance, in a linear static problem one has Kδq = b and qnew = q + δq. Also
numerical methods for DAEs and ODEs in dynamics proceed by performing
updates on the configurations at each time step. The problem is that, within
our state q, positions can be updated with straight sums as xi,new = xi + δxi,
but quaternions cannot be updated as easily. In fact doing a straight sum with
a δρi ∈ H1 as in ρi,new = ρi + δρi could invalidate the unit-length of ρi,new.
A more rigorous solution is to do incremental updates of quaternions using the
exponential map. This requires some basic concepts of Lie algebras exposed in
the previous section.
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This said, in our code we can work with increments in the following form:

δq = {δx1, δθ1, δx2, δθ2, . . . , δxnn
, δθnn

} (34)

and, where one has to perform the incremental update to find qnew, the rota-
tional parts are incremented pre-multiplying the quaternion by an exponential
map, as:

xi,new = xi + δxi (35)

ρi,new = ρδiρi (36)

where one computes ρδi = exp([0, δθi]) using (16), then computes the product
ρδiρi using (6). More succinctly, the incremental update is a map qnew =
Λ(q, δq).

In the following, for expressing formulas in a easier way, we group all the
translational degrees of freedom and all the rotational degrees of freedom in two
separate vectors qx and qρ, and we do the same for the increments δqx and δqρ:

qx = {δx1, δx2, . . . , δxnn} (37)

qρ = {ρ1,ρ2, . . . ,ρnn
} (38)

δqx = {δx1, δx2, . . . , δxnn} (39)

δqρ = {δθ1, δθ2, . . . , δθnn} (40)

5.2. Interpolation

In IGA, the role of FEA shape functions is done by Basis Functions of the spline.
For a given knot abscissa τ along the spline, one can compute interpolated
position and gradient using Basis Functions Ni(τ) and their derivatives N̊i(τ) =
dNi(τ)
dτ , that is:

r(τ) =
∑
i

Ni(τ)xi (41)

r′(τ) =
dr(τ)

dτ
J−1
sτ (42)

=
∑
i

N̊i(τ)xiJ
−1
sτ (43)

Once this is computed, ε(τ) can be computed with (19).
Similarly, one would be tempted to interpolate the rotation at a given ab-

scissa τ using a similar method, however applying directly ρ(τ) =
∑
iNi(τ)ρi

is not possible because the linear sum of unit quaternions does not represent, in
general, a rotation. In fact, the spline interpolation of quaternions is still a de-
bated problem and exact solutions presented in literature, such as [26, 25], often
lead to complex formulas that add complication and computational overhead.
As a simplification we introduce an auxiliary co-rotated system ρ, for instance
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an average of rotations of the closest nodes, and we interpolate rotations by do-
ing a weighted sum of rotation pseudovectors later recast as a quaternion using
the exponential map:

ρ(τ) = ρ exp

(
pure

∑
i

Ni(τ)imag(log(ρ∗ρi))

)
(44)

Then, the R matrix can be computed as R(ρ). Also, the curvature κ is com-
puted as:

κ(τ) =
∑
i

J−1
sτ N̊i(τ)imag(log(ρ(τ)∗ρi)) (45)

These allow the computation of local stresses m(τ) and n(τ) according to
(26). If a constitutive material includes damping effects, one can compute also
ε̇(τ) = RT ∑

i N̊i(τ)ẋiJ
−1
sτ and κ̇(τ) = RT ∑

i N̊i(τ)RiωiJ
−1
sτ to be used in

(29).

5.3. Gauss quadrature

As in most FEA frameworks, also in IGA the backbone of the process is the
computation of three main ingredients: the vector of internal forces f int, the
tangent stiffness matrix Kt, and the mass matrixM . Once these are computed,
one can solve, for instance, linear elastic problems as Ktδq = fext, non linear
elastic problems that iterate on Ktδq = fext + f int up to convergence, explicit
dynamic integration as in Mq̈ = fext + f int and so on. Therefore, in the
following, we present the procedure for computing these terms, starting from
the most relevant part, that is the vector of internal forces f int.

Here we focus on computing f int via typical Gauss integration. We remark
that an appropriate choice of integration points must be used in order to avoid
shear locking phenomena, to this end we used selective reduced integration re-
quiring fewer quadrature points than standard integration techniques. Efficient
choice of Gauss points is discussed by various authors, for instance [23, 21, 1].
In fact, a more recent and efficient approach to IGA consists in using collocation
instead of Gauss integration [3, 31, 45].

Also, we use the same idea of FEA of computing internal forces and ma-
trices on a per-element basis, where later all element terms will be assem-
bled/overlapped in global system-level matrices and vectors. In this sense, in
our embodiment the j-th element is the j-th span of the B-spline, so for each
element we compute f int,j , and later all those per-element internal forces are
assembled in a single vector 1.

1Differently from FEA, in IGA one could compute the system-level vector without passing
through intermediate per-element vectors, but here for clarity we develop our formulation on
a per-element basis
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Over the j-th span from s = sA to s = sB the weak form of the equilibrium
reads:

δΠ =

∫ sB

sA

(δεana + δκama) ds−
∫ sB

sA

(δxana + δθama) ds (46)

Recalling (19), evaluating its increment and referring it to the global coordi-
nates:

δεa = δr′a − δθa × r′a (47)

So, at a point at abscissa τ along the spline, δε and δκ can be expressed
using interpolation of the B-spline given the following terms:

δr′a =
∑
i

J−1
sτ N̊iδxi (48)

δκa =
∑
i

J−1
sτ N̊iRiδθi (49)

δθa =
∑
i

NiRiδθi (50)

We rewrite the weak equilibrium introducing the vector of internal forces

δqTj f int,j − δqTj fext,j = 0 (51)

where f int,j and fext,j are the internal and external forces acting on the
j-th node.

Looking at the expressions above, one can write the expression of the con-
tribution from the i-th control node to f int,j as an integral in s arc-length
coordinate:

f int,j,i =

∫ sB

sA

[
J−1
sτ N̊iI NiRir̃

′

0 J−1
sτ N̊iRi

]T [
na
ma

]
ds (52)

The integral is computed with a sum over ngp Gauss points, so we introduce
Gauss point weights wk, jacobians Jτζ = dτ

dζ where ζ ∈ [−1,+1] is the coordinate
used for Gauss quadrature. Because of change of coordinates, we also have to
multiply the integrand by Jsτ , so some jacobians will simplify as J−1

sτ Jsτ = 1.
Finally one has:

f int,j,i =

ngp∑
k

wkJτζ

[
N̊iI JsτNiRir̃

′

0 N̊iRi

]T [
na
ma

]
(53)

Here all the terms of the integrand (namely, Ni, N̊i, Jsτ , r̃′, na and ma)
must be computed for the k-th knot abscissa τk =

(
sB−sA

2 ζk + sB+sA
2

)
where ζk

is one of the ngp tabulated abscissas for Gauss integration, i.e. coupled to the
corresponding weight wk. By the way one can see that Jτζ = sB−sA

2 .
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We remark that control points will affect neighbouring spans (elements)
hence terms f int,j,i from different spans will overlap and must be summed to
obtain f int,j .

The number of nodes influencing a single span increases with the spline order.
IGA spline Basis Functions can be considered like shape functions affecting more
knot spans, combining each other in the shared segments of support. For this
reason an higher spline order leads to more overlapped Basis Functions, while
increasing the element order in FE analysis adds nodes within the element but
internal nodes do not affect adjacent elements. This leads to a band-diagonal
stiffness matrix whose band width increases with the spline order, as opposed
to traditional FE elements characterized by a block-diagonal stiffness matrix
whose blocks overlap only at the boundary nodes.

6. Inertial effects

The beam discussed so far does now include inertial effects, that are needed if
one wants to simulate (linear or non-linear) dynamics. For the case of dynamics,
the strong form of the Cosserat beam becomes:

The strong form for the equilibrium of the Cosserat beam, assuming the
center of mass being centered on the beam centerline, is:

νr̈a = n′a + na (54)

Jaω̇a + ω̃aJaωa = m′a + r′a × na +ma (55)

where ν is mass per unit length of the beam (ex. in [kg/m]), Ja is the tensor of
inertia per unit length of the section, in absolute coordinates, hence if a sectional
J is given in local section coordinates, one has Ja = RJRT , and finally ω̃aJaωa
is the gyroscopic term, depending quadratically on angular velocity.

In the most general setting where the center of mass of the section is not
necessarily centered on the centerline r(s) of the beam, the strong form for the
equilibrium of the Cosserat beam becomes:

M rr,ar̈a +M rw,aω̇a + νω̃aω̃aca = n′a + na (56)

Mwr,ar̈a +Mww,aω̇a + ω̃aJaωa = m′a + r′a × na +ma (57)

where ca is the distance of the center of mass to the centerline, leading to an
additional quadratic term νω̃aω̃aca (that can be interpreted as a centrifugal
force), and where we introduced a sectional mass matrix Ms, expressed in the
centerline reference of the the section, as:

Ms =

[
M rr M rw

Mwr Mww

]
=

[
νI νc̃T

νc̃ J

]


ν 0 0 0 νcz −νcy
0 ν 0 −νcz 0 0
0 0 ν νcy 0 0
0 −νcz νcy Jxx 0 0
νcz 0 0 0 Jyy −Jyz
−νcy 0 0 0 −Jzy Jzz


(58)
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where ν is mass per unit length of the beam (ex. in [kg/m]), c is the position of
the center of mass respect to the centerline, in the local beam section reference
(hence with ony y and z values, and cx = 0), Jyy =

∫
Ω
ρz2dΩ, Jzz =

∫
Ω
ρy2dΩ,

Jyz = Jzy =
∫

Ω
ρyzdΩ, and finally Jxx = Jyy + Jzz by the polar theorem.

Note that for uniform density, one can compute J values from the second
moments of area (the same values used for the elastic properties) as Jyy = ρIxx
etc.

The sectional mass matrix relates linear/angular momenta and velocities (all
them in local section reference) as{

L
A

}
=

[
M rr M rw

Mwr Mww

]{
ṙ
w

}
(59)

The corresponding sectional mass matrix in absolute reference is:

Msa =

[
M rr,a M rw,a

Mwr,a Mww,a

]
=

[
R 0
0 R

]
Ms

[
RT 0

0 RT

]
(60)

Note that the presence of quadratic terms (gyroscopic etc.) in inertial forces
can have an effect both on stiffness and damping matrices, because they add
up to the internal forces and, as such, they could add a contribution in Kt =
−∇qf int and Rt = −∇vf int if one needs such matrices for linearization, modal
analysis or such.

6.1. Consistent mass matrix

Going to the weak formulation, for numerical implementation, one has to com-
pute the element mass matrix Me, assuming accelerations in absolute reference.
This can be done in two ways: using a lumped mass matrix, or using a consistent
mass matrix.

With the approach of the consistent mass matrix, one performs a Gauss
quadrature over the element as

Meij =

∫ sB

sA

NiNjMsads (61)

=

nGP∑
k

wKJsτJτζNiNjMsa (62)

Since our formulation uses angular velocities and torques expressed in local
referencesRi of the nodes, instead than in the absolute reference, allMematrices
should be transformed via a left-multiplication with I and RTi blocks on the
diagonal per each node, and right-multiplication with I and Ri blocks to obtain
the matrices M t that we can finally assemble at system level:

M t =


I 0 0 0

0 R1
T 0 0

0 0 I 0

0 0 0 R2
T

. . .

M e


I 0 0 0
0 R1 0 0
0 0 I 0
0 0 0 R2

. . .

 (63)
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Note that for small differences of sectional R respect to the node rotations
Ri of the element, as in case of moderate bending, one can simplify RT

i R ≈ I
and RTRi ≈ I, also one knows that RM rr,aR

T = M rr,a = νI thus obtaining
a simplified expression:

Mtij ≈
∫ sB

sA

NiNj

[
M rr,a RM rw

MwrR
T Mww

]
ds (64)

≈
nGP∑
k

wKJsτJτζNiNj

[
M rr,a RM rw

MwrR
T Mww

]
(65)

This works also in case of large rotations and displacements, but again recalling
that the simplification holds for small bending within a single element span.

A further simplification: note that the latter simplified expression is constant
if Mwr = 0, M rw = 0 (that is, when the center of mass is on the centerline),
and in this special case it simply becomes:

Mtij ≈
nGP∑
k

wKJsτJτζNiNjMs (66)

This constant expression could be evaluated just once at the beginning of the
simulation.

6.2. Lumped mass matrix

The approach of the lumped mass matrix is more favorable in terms of compu-
tational efforts. Basically at each i-th IGA control point we create a 6x6 mass
matrix M ii accounting for a portion of the total mass of the element.

There are different heuristics to obtain lumped masses: in our case we use a
simple method where we compute and equivalent length per node as λ = L/n
where L is the span length at the beginning of the simulation, and n is the
number of nodes affecting the span (ex. n = 2 for a linear IGA, n = 3 for a
quadratic IGA, etc.). Finally, one has that Mt of the element has the following
blocks on the diagonal:

Mtii = λ

[
M rr,a RM rw

MwrR
T Mww

]
(67)

Note that Mww is constant as a consequence of the fact that we assumed
angular velocities ωi to be expressed in the local coordinate system.

In the case of center of mass corresponding to centerline, on the diagonal
one has only atomic masses mi = λν for the translation degrees of freedom, and
and the 3x3 tensor of inertia Mww for the rotational degrees of freedom, in this
special case one does not need to rotate the upper right and lower left blocks
with matrices R, and we arrive to a very simple expression, that being constant
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it can be evaluated once at the beginning of the simulation:

Mtii = λM (68)

= λ

[
νI 0
0 Mww

]
(69)

For symmetric sections, moreover, the term λMww =
diag(λJxxi

, λJyyi , λJzzi) is diagonal too.

7. Stiffness and damping matrices

Tangent stiffness and damping matrices might be required for various reasons:
implicit integration schemes, linearized motion, modal analyis, etc.

The tangent stiffness matrix and the damping matrix are computed by nu-
merical differentiation of f int.

Kt = −∇qf int = −
[
∂f int
∂q

]
, Rt = −∇vf int = −

[
∂f int
∂v

]
(70)

Since the procedure for computing (53) is quite simple, the computational
overhead is not excessive with respect to an analytic evaluation of the matrix,
yet it has the useful property of being of general validity even when using black-
box nonlinear constitutive laws for materials. For a practical implementation,
for the sake of high performance, one should exploit the sparsity pattern of Kt.
In detail, the numerical differentiation operates on a per-span basis, to obtain
per-span stiffness matrices Ktj that are summed afterward to obtain the large
and sparse Kt system-level matrix.

8. Constitutive models

Elements of chrono::fea::ChElementBeamIGA class own ”section” objects that
define their constitutive model: the chrono::fea::ChBeamSectionCosserat

objects. These section objects, in the base implementation, are made
by three components describing separately the elastic, plastic, and damp-
ing constitutive models, hence sections are made by three objects inher-
ited respectively from the classes chrono::fea::ChElasticityCosserat

chrono::fea::ChPlasticityCosserat chrono::fea::ChDampingCosserat.
In the following we describe the implementation of some of them.

8.1. Models of elasticity

This is a list of ready-to-use constitutive models, all inherited from the
chrono::fea::ChElasticityCosserat class.
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8.1.1 Generic linear elasticity

This section describes the elasticity model implemented in the class
chrono::fea::ChElasticityCosseratGeneric.

The generic case of constitutive model for the Cosserat rod, with linear
elasticity, requires a matrix of sectional stiffness Eεκ ∈ R6x6, not necessarily
sparse. Such matrix can be provided by some detailed 3D FEA analysis of a
chunk of beam, in a preprocessing stage.{

n
m

}
= Eεκ

{
ε
κ

}
(71)

We remark that, depending on the 36 values used in the 6x6 Eεκ matrix,
n and m might have coupled effects. Figure 2 shows the reference coordinate
system of the section.

Figure 2: Section of the beam. Generic case.

8.1.2 Basic diagonal linear elasticity

This section describes the elasticity model implemented in the class
chrono::fea::ChElasticityCosseratSimple.

For centered symmetric sections, the previous relation can be simplified. In
fact one can express the constitutive relation via a linear mapping where n and
m effects are uncoupled:

n = n(ε) (72)

m = m(κ) (73)

In detail, with linear elasticity, a very common case is the linear mapping:

n = Cε (74)

m = Dκ (75)
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where one simply uses the material matrices:

C =

 EA 0 0
0 GAky 0
0 0 GAkz

 D =

 GJ 0 0
0 EIy 0
0 0 EIz

 (76)

for given material Young’ modulus E, shear modulus G, area A, Timoshenko
shear correction factors ky, kz, torsion constant J , and second moments of area
Iy, Iz computed in the section reference. Note that the center of axial forces Ca
and the shear center Cs are in the origin, by assumption. See Fig. 3.

Figure 3: Section of the beam. Simplified case (diagonal Eεκ).

8.1.3 Advanced section for linear elasticity

This section describes the elasticity model implemented in the class
chrono::fea::ChElasticityCosseratAdvanced.

A more general constitutive model is the one depicted in Fig. 4, where the
Iy, Iz are computed respect to an auxiliary reference Ca, center of axial forces,
that has displacement ya, za and rotation α respect to the reference center line
of the beam [32] .

Also, in case of non-symmetric sections, it may happen that the shear center
Cs does not coincide with Ca; if so, one can provide displacements ys, zs and
rotation β of the reference of the shear center Cs respect to the reference center
line of the beam.

Usually, for symmetric sections, it tends to ys = ya, zs = za, α = β. For
simple problems like rectangular or circular sections centered on the reference
line of the beam, one has ys = ya = 0, zs = za = 0, α = β = 0.
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Figure 4: Section of the beam. Advanced case.

The linear model becomes:

{
n
m

}
=


a11 0 0 0 a12 a13

0 s11 s12 s13 0 0
0 s21 s22 s23 0 0
0 s31 s32 s33 0 0
a21 0 0 0 a22 a23

a31 0 0 0 a32 a33


{
ε
κ

}
(77)

Here the components aij = A and sij = S are obtained by rotations R and
translations T of the diagonal constitutive matrices ACa

and SCs
:

A = TCa
RCa

ACa
RT
Ca
T TCa

(78)

S = RT
Cs
T−1
Cs
SCsT

−T
Cs
RCs (79)

where

ACa =

 EA 0 0
0 EIy 0
0 0 EIz

 SCs =

 GAky 0 0
0 GAkz 0
0 0 GJ

 (80)

The above model requires the following parameters: Young modulus E, shear
modulus G, area A, Timoshenko shear correction factors ky, kz, torsion constant
J , and second moments of area Iy, Iz, as the diagonal simplified model, plus the
position and rotation of Ca as ya, za and α, plus the position and rotation of Cs
as ys, zs and β.

8.1.4 Mesh-integrated section

NOTE: MESH INTEGRATED SECTION IS EXPERIMENTAL.
This section describes the elasticity model implemented in the class

chrono::fea::ChElasticityCosseratMesh.
The model is represented in Fig.5. This model is based on a triangle-mesh

representation of the section.
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Figure 5: Section of the beam. Mesh section case.

The user can input an arbitrary number of triangles, that can be used to
approximate whatever type of section shape.

The idea is that the constitutive law {ε,κ} → {n,m} is computed via
integration of a 3D constitutive model over the section, via the following steps:

1- Given ε and κ, the 3x3 tensor of the 3D strain εi is computed at each
i-th pi point, in C reference orientation:

εxx = εx + κyz − κzy + ω(y, z)
dκx
dx

(81)

γxy = 2εxy = εy + κx

(
∂ω

∂y
− z
)

(82)

γxz = 2εxz = εz + κx

(
∂ω

∂z
+ y

)
(83)

Note that warping is represented by a function ω(y, z), that is assumed zero for
performance reasons.

2- Then a constitutive law, that can be arbitrarily defined by the user, in-
cluding plasticity, is used to compute the 3D stresses:

σi = σi(εi)

Note that σyy and σzz and σyz are not needed in the following. For example,
for linear elasticity, one could simply set σxx = Eεxx, σxy = Gγxy, σxz =
Gγxz. However, more complex laws could be used, with orthotropic or plastic
behaviour, for instance.

3- Finally the 3D stresses σi are linearly interpolated over triangles, and
their linear interpolation is integrated over the triangles to give the resulting n
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and m as:

nx =

∫
A

σxxdA (84)

ny =

∫
A

σxydA (85)

nz =

∫
A

σxzdA (86)

mx =

∫
A

(yσxz − zσxy) dA (87)

my =

∫
A

zσxxdA (88)

mz =

∫
A

−yσxxdA (89)

Note that the integrals above have a closed form solution assuming linear
interpolation over triangles. In fact they boil down to a sum over triangles where
the t-th triangle has area At and coordinates p1 p2 p3, with corresponding values
σ1,xx, σ2,xx, σ3,xx etc.:

nx =
∑
t

nx,t, ny =
∑
t

ny,t, nz =
∑
t

nz,t, (90)

mx =
∑
t

mx,t, my =
∑
t

mx,t, mz =
∑
t

mz,t (91)

nx,t = At(σ1,xx/3 + σ2,xx/3 + σ3,xx/3) (92)

ny,t = At(σ1,xy/3 + σ2,xy/3 + σ3,xy/3) (93)

nz,t = At(σ1,xz/3 + σ2,xz/3 + σ3,xz/3) (94)

mx,t = 2At((σ1,xzp1,y)/12 + (σ1,xzp2,y)/24 + (σ2,xzp1,y)/24 (95)

+ (σ1,xzp3,y)/24 + (σ2,xzp2,y)/12 + (σ3,xzp1,y)/24 (96)

+ (σ2,xzp3,y)/24 + (σ3,xzp2,y)/24 + (σ3,xzp3,y)/12 (97)

− (σ1,xyp1,z)/12− (σ1,xyp2,z)/24− (σ2,xyp1,z)/24 (98)

− (σ1,xyp3,z)/24− (σ2,xyp2,z)/12− (σ3,xyp1,z)/24 (99)

− (σ2,xyp3,z)/24− (σ3,xyp2,z)/24− (σ3,xyp3,z)/12) (100)

my,t = 2At((σ1,xxp1,z)/12 + (σ1,xxp2,z)/24 + (σ2,xxp1,z)/24 (101)

+ (σ1,xxp3,z)/24 + (σ2,xxp2,z)/12 + (σ3,xxp1,z)/24 (102)

+ (σ2,xxp3,z)/24 + (σ3,xxp2,z)/24 + (σ3,xxp3,z)/12) (103)

mz,t = −2At((σ1,xxp1,y)/12 + (σ1,xxp2,y)/24 + (σ2,xxp1,y)/24 (104)

+ (σ1,xxp3,y)/24 + (σ2,xxp2,y)/12 + (σ3,xxp1,y)/24 (105)

+ (σ2,xxp3,y)/24 + (σ3,xxp2,y)/24 + (σ3,xxp3,y)/12) (106)

An alternative to the closed-form integration above would be to use a more
general Gauss quadrature, that is a weighted sum of the integrands over Gauss
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points. However, Gauss points could not stay at the vertexes of the triangles,
and would amount to a larger number of point samples. In our approach,
instead, one gets the same results of the analytical Iz of a rectangular area
just with two triangles and 4 points (two are shared between triangles, on the
diagonal).

Benefits of the above approach:

� one does not have to provide A, Iz, Iy and other geometric properties;

� one can use multiple materials as in layered beams (in this case one as-
signs different materials to vertexes; btw. if two triangles with different
materials must be side to side, it is enough to have that their vertexes at
the interface won’t be shared, but overlap)

� one can use plasticity (in this case maybe one needs to create a section
mesh that has many inner points, to have a better sampling of the material
properties, ex. with Poisson uniform sampling of the area).

Drawback: this model makes the kinematic assumption of rigid rota-
tion/translation of the section, assuming that the section remains flat. This
is not an issue for bending or pulling (where the results should match those
obtained by the ’advanced section’ case above), but it can be inexact for shear
and twisting. In detail, twisting would be correct only for almost-circular shapes
like ’O’ tubes; for other shapes such as ’C’ sections, shear would be wrong, as
it should circulate. Also, warping causes longitudinal tension and other effects
(ex. see Vlasov theory), not accounted here as we assume thewarp function
ω(y, z) = 0 for simplicity. Finally: shear on y or z should give a shear that
vanishes at the section border, in the continuum, but the approximation above
neglects this.

To avoid the drawbacks above, we suggest to do a 3D FEA analysis of a chunk
as a preprocessing, and put the 6x6 matrix in the ’generic linear elasticity’, with
the only caveat that you would loose the ability of using generic σi = σi(εi)
material laws.

TO DO: SEE IF ADDING THE WARPING TERMS THIS CAN
FIX THE DRAWBACKS.

8.2. Models of damping

This is a list of ready-to-use constitutive models for damping, all inherited from
the chrono::fea::ChDampingCosserat class.

8.2.1 Linear damping

This section describes the elasticity model implemented in the class
chrono::fea::ChDampingCosseratLinear. The model is based on a simple
relation via a constant sectional damping matrix Rs ∈ R6×6 that maps the the
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instantaneous rate of change of ε and κ to the sectional forces:{
n
m

}
= Rs

{
ε̇
κ̇

}
(107)

An easy sub-case is whenRs is diagonal, hence defined via six scalar values of
structural damping. Even in this case, anyway, finding good values of structural
damping is not easy and might take complex experimental validation. An even
simpler alternative is using the Rayleigh damping - see below.

8.2.2 Rayleigh damping

This section describes the elasticity model implemented in the class
chrono::fea::ChDampingCosseratRayleigh.

The original Rayleigh defines a damping matrix as a linear combination of
mass matrix and stiffness matrix, as R = αM + βK, in case of linearized
motion.

In our case we extend this to the large displacement case, with some caveats.
First of all, the model is defined via the single β parameter of the Rayleigh damp-
ing model; i.e the stiffness-proportional damping. The α mass-proportional
damping here is neglected. Second: the concept of stiffness matrix in the case
of large motions can be equivocal, as it could be even the tangent stiffness. To
keep things simpler and more predictable, in our model we use the sectional
stiffness matrix at the initial undeformed configuration, hence we have the con-
tribution of damping as:{

n
m

}
= βEs(t0, ε0, κ0)

{
ε̇
κ̇

}
(108)

8.3. Models of inertia

This is a list of ready-to-use models for sectional inertia, all inherited from the
chrono::fea::ChInertiaCosserat class.

In general, all models should be able to provide a sectional mass matrix M
that connects linear/angular momenta and velocities (all them in local section
reference) as {

L
A

}
=

[
M rr M rw

Mwr Mww

]{
ṙ
w

}
(109)

.

8.3.1 Basic diagonal inertia with centered mass

This section describes the elasticity model implemented in the class
chrono::fea::ChInertiaCosseratSimple.

As seen in Fig.6, it assumes the center of mass to be in the centerline C, and
the section to be aligned to main inertia axes.

The needed parameters are:
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� volumetric density ρ in [kg/m3].

� area A, in [m2]. Recall definition A =
∫

Ω
dΩ

� second moments of area Iyy and Izz, in [m4]. Recall definitions: Iyy =∫
Ω
z2dΩ, Izz =

∫
Ω
y2dΩ.

Assuming a constant volumetric density ρ in the material, one also has Jyy =∫
Ω
ρz2dΩ = ρIyy, Jzz =

∫
Ω
ρy2dΩ = ρIzz, and finally, for the polar theorem,

Jxx = Jyy + Jzz.
Hence all values of the sectional mass matrix Ms can be simply obtained

using the following formula:

Ms =


ρA 0 0 0 0 0
0 ρA 0 0 0 0
0 0 ρA 0 0 0
0 0 0 ρ(Iyy + Izz) 0 0
0 0 0 0 ρIyy 0
0 0 0 0 0 ρIzz

 (110)

Figure 6: Section of the beam. Simple diagonal case.

8.3.2 Advanced generic inertia

This section describes the elasticity model implemented in the class
chrono::fea::ChInertiaCosseratAdvanced.

As seen in Fig.7, it assumes the center of mass Cm to be optionally offset
from the centerline C.

The needed parameters are:

� sectional density per unit length µ, in [kg/m].

� the distances ym zm of the center of mass Cm respect to the centerline C.
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Figure 7: Section of the beam. Advanced case, with offset of center of mass.

� sectional moment of inertia per unit length Jyy, in [kgm]

� sectional moment of inertia per unit length Jzz, in [kgm]

� sectional moment of inertia per unit length Jyz, in [kgm]

Moments of inertia Jyy, Jyy, Jyz are assumed measured respect to the YZ
axes of the section, with origin at centerline C.

Note that there is no assumption of Y Z axes to be aligned to main axes of
the inertia tensor.

Also, there is no assumption of uniform density: one just needs to compute
the µ mass per unit length and Jyy, Jyy, Jyz inertias per unit length, even for
a non-uniform beam, using some form of integration or pre-processing via the
formulas

µ =

∫
Ω

ρ dΩ (111)

Jyy =

∫
Ω

ρ z2 dΩ (112)

Jzz =

∫
Ω

ρ y2 dΩ (113)

Jyz =

∫
Ω

ρ yz dΩ (114)

Values of the sectional mass matrix Ms will correspond to:

Ms =


µ 0 0 0 µcz −µcy
0 µ 0 −µcz 0 0
0 0 µ µcy 0 0
0 −µcz µcy (Jyy + Jzz) 0 0
µcz 0 0 0 Jyy −Jyz
−µcy 0 0 0 −Jyz Jzz

 (115)
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8.3.3 Advanced generic inertia in mass reference

This section describes the elasticity model implemented in the class
chrono::fea::ChInertiaCosseratMassref.

Figure 8: Section of the beam. Advanced case, with offset of center of mass and
inertias defined in the Cm reference along Ym Zm.

As seen in Fig.8, it assumes the center of mass Cm to be optionally offset
from the centerline C like in ChInertiaCosseratAdvanced, but here inertias are
assumed to be computed in the reference of the center of mass Cm, along rotated
axes Ym Zm.

The needed parameters are:

� sectional density per unit length µ, in [kg/m].

� the distances ym zm of the center of mass Cm respect to the centerline C.

� rotation angle φ, in [rad], of the mass auxiliary reference Ym Zm, respect
to main axes Y Z.

� sectional moment of inertia per unit length Jyym ,

� sectional moment of inertia per unit length Jzzm ,

Moments of inertia Jyy, Jyy, Jyz are assumed measured respect to the Ym
Zm axes of the section, using origin at center of mass Cm.

Axes Ym Zm are assumed principal axes of inertia, so Jyzm = 0 by assump-
tion.

Values of the sectional mass matrix Ms will correspond to:

Ms =


µ 0 0 0 µcz −µcy
0 µ 0 −µcz 0 0
0 0 µ µcy 0 0
0 −µcz µcy (Jyy + Jzz) 0 0
µcz 0 0 0 Jyy −Jyz
−µcy 0 0 0 −Jyz Jzz

 (116)
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where[
Jyy −Jyz
−Jyz Jzz

]
= Rφ

[
Jyym 0

0 Jzzm

]
Rφ

T +

[
µc2z −µcycz
−µcycz µc2y

]
(117)

where the 2x2 rotation matrix Rφ contains sines and cosines for the rotation
of an angle φ about axis x.

8.4. Models of plasticity

This is a list of ready-to-use constitutive models, all inherited from the
chrono::fea::ChPlasticityCosserat class.

8.4.1 Simplified beam plasticity

This section describes the plastic constitutive model 2 implemented in
chrono::fea::ChPlasticityCosseratLumped class.

This model simply uses one of the elastic models exposed in 8.1.1, 8.1.2,
8.1.3 or 8.1.4 as the elastic constitutive model to compute the elastic predictor
n, m, then it performs six independent plastic return mappings for the separate
components nx, ny, nz, mx, my, mz.

This means that, assuming mixed nonlinear isotropic-kinematic hardening,
one must introduce six functions expressing the isotropic hardening nx,Y (εpnx

),
ny,Y (εpny

), nz,Y (εpnz
), mx,Y (εpmx

), my,Y (εpmy
), mz,Y (εpmy

), and six functions

βnx
(εpnx

) βny
(εpny

) βnz
(εpnz

) βmx
(εpmx

) βmy
(εpmy

) βmz
(εpmz

)
See Appendix A for a primer on plasticity.
In most cases, however, plasticization has a greater effect on wire bending,

so one might input only the yield data for the Y and Z bending: my,Y (εpmy
),

my,Y (εpmy
) and βmx

(εpmy
), βmy

(εpmz
). This is especially true for thin beams.

In the simplest setting, i.e. in a pure plastic context, the above curves
just become two yield constant values nx,Y , ny,Y . These are like limits that
’clamp’ the maximum cut-torques in the beam; beyond those limits, the beam
plasticizes.

This approach, though computationally efficient, has some limitations:

� there is no information on how stresses are distributed within a section.
For example, in a real 3D withstanding plasticization, when the beam is
bent back to straight shape, the state of residual inner stresses is a zig-zag
pattern, but in this formulation there is no way to recover this information;

2We remark that when high accuracy is needed in studying beams that withstand plasti-
cization and large displacements, most often it is necessary to switch to a completely different
approach where no beam finite elements are used at all, and the beams are modeled with a
fine mesh of 3D hexahedrons or tetrahedrons with 3D plasticity. But if one aims at a low
computational overhead, and if some simplifying assumptions can be accepted, there are some
solutions that can introduce plasticity within the structural beam elements such as the IGA
beam described here.
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� all plastic effects are decoupled: this makes the model fit mostly for cases
where one has pure bending in a single direction, but no bending plus
strong pulling, etc.;

� again, because of the decoupling of the plastic effect in the three bend-
ing directions, a diagonal bending might give a different result from what
would happen in a real 3D beam; also, for the same reason, bending a cir-
cular shape is not indifferent to the direction of the bending, as expected,
but shows some isotropy instead.

For the reasons above, this simplified beam plasticity can be suggested only
for problems with thin beams that plasticize while bending in a single Y or Z
direction, or plasticize with pure torsion on X, or plasticize for pure elongation.
But it is better to avoid it for mixed cases.

8.4.2 Mesh section beam plasticity

NOTE: UNDER DEVELOPMENT - DO NOT USE.
This approach can be used only if paired with the mesh-based elastic con-

stitutive model 8.1.4. In fact, it uses a 1D plasticity model for the continuum,
where the yield is specified for the σxx stress (the longitudinal stress of a (y,z)
point on the section). Such plasticization is enforced for the σxx stresses of all
points of the mesh of Fig.5, so it is suggested to have a dense and uniformly
spaced mesh. This approach allows to plot the distribution of stress, plastic
flow etc. along a section.

For the reason above, in this case it is necessary to provide two curves,
σY = σY (εp) and β = β(εp).

This method has some benefits: it can give results close to what happens
in a real 3D beam, even if one couples bending in Y and Z directions and also
traction. Moreover, one could use the typical σY (εp) and β(εp) hardening curves
available in metal datasheets or from laboratory tests.

The limitation of this method, as for the mesh-based elastic constitutive
model 8.1.4, is that torsion does not consider warping, and shear is not vanishing
at the border of the section as it should happen in reality (ie. no parabolic shear),
so if one wants to apply a plastic yield also to shear, the final result would be a
loose approximation of the real beam (an exception is that it would work just
fine for circular beams). This is not a big limitation in case of long thin beams,
where plasticization is mostly interesting for bending, hence relative to σxx.

9. Numerical tests

9.1. The ring bending test

This is a classical benchmark where a cantilever beam is subject to a concen-
trated torque T acting on the tip to obtain a ring bending deformation. Since
the length of the neutral axis is constant under pure bending, the initial beam
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length L must be equal to the final circumference, hence the curvature radius
must be ρ = L

2π . For a linear elastic rod it holds ρ = EI
T , so the torque required

to obtain a perfect circle must be

T =
2πEI

L

Because of the large deformations, we performed a non-linear static analysis
where the torque value has been increased gradually to avoid divergence. Our
simulations converge consistently with the analytical solution, as shown in Fig. 9.

Figure 9: Progression of ring bending

9.2. Princeton beam experiment

A thin beam, depicted in Fig. 10, is subject to large deformations and large
rotations because of a tip load at E, for different angles θ. A non-linear analysis
shows that, for large displacements, a strong twisting action couples to the
bending action, hence obtaining out-of-plane displacements even if the load is
vertical.

Three loading conditions are tested: P1 = 4.448N, P2 = 8.896N, and P3 =
13.345N, for θ ranging in the [0◦, 90◦] interval. The beam has length L = 0.508m,
section height H = 12.77mm, section thickness T = 3.2024mm, Young modulus

E = 71.7GPa, ν = 0.31, G = E (1+ν)
2 = 27.37GPa.

Because of the geometric nonlinearities, the solver must perform Newton-
Raphson steps before obtaining a zero residual in the equations of static equi-
librium.

Results in Figs. 11, 12 and 13 show a good agreement between the present
IGA formulation and reference data [4]. In detail, there is a good agreement
with other geometrically-exact beam formulations (non IGA-based) discussed
in [5] for Dymore and in [19] for MBDyn, as well as an agreement with the ex-
perimental results in [16, 17], obtained with a beam made with 7075 aluminium
alloy.
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Figure 10: Setup of the benchmark for
the Princeton beam experiment.
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Figure 11: Twist rotation of the beam
for the Princeton experiment.
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Figure 12: Flapwise displacement at
the beam tip versus loading angle for
three loading conditions.
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Figure 13: Chordwise displacement at
the beam tip versus loading angle for
three loading conditions.

9.3. Modal analysis

Modal analysis has also been performed on the cantilever in order to compare
the vibration frequencies found numerically with the analytical results available
for this case. The constrained eigenvalue problem [36] is a particular case of the
generalized eigenvalue problem, which means finding the set of values λ and of
vectors Φ that solves the equation (AΦ = λBΦ).
Recalling the dynamic equation of the free vibration of a linear elastic structure
discretized into a set of finite elements, with M and K respectively mass and
stiffness matrix, and u displacement vector we look for the solution in the form
u = Φsin(ωt) of the equilibrium equation Mü+Ku = 0.

This approach leads to a generalized eigenvalue problem in the form KΦ =
ω2MΦ whose eigenvalues are the free vibration frequencies. We solve the con-
strained problem following the approach proposed by Porcelli for linearly con-
strained system. It requires to calculate a matrix Z whose columns are a basis
for the kernel of the constraints system of equations and then solving the gen-
eralized eigenvalue problem whose dimension is reduced by the number of con-
strained DOF m. It can be verified that for the cantilever this is equivalent to
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trim the fist six rows and columns of the matrices, which is done automatically
by Chrono if the first node is set as fixed.

Mass and stiffness matrices can consequently be processed directly to eval-
uate the eigenvalues and eigenvectors. The so found frequencies f = ω

2π match
the analytical solution. Furthermore we compare results obtained using I, III
and V order splines, although no considerable differences emerged since 16 con-
trol points are used. Beam datas: Length: 0.4[m], Section (rectangular):
0.012×0.025[m], Density: 1000[kg/m3, Young’s modulus: 200[MPa], Poisson’s
ratio: 0.3

Analytical I Ord. Spline III Ord. Spline V Ord. Spline
y I 34.04 34.61 34.31 34.90
z I 70.92 70.97 71.31 72.49
y II 213.3 212.1 212.4 213.6
z II 444.5 436.3 437.0 439.4

In order to check the correctness of the eigenvectors their values associated
with y and z displacement are plotted along the beam axis and they correctly
represent the correspondent normal modes.
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Figure 14: First eigenvector - Y 1st
Mode
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Figure 15: Second eigenvector - Z 1st
Mode

9.4. Jeffcott rotor

This benchmark explores the reliability of the numerical method in the nonlinear
dynamical analysis of a flexible system rotating at finite angular velocity. A
rotating unbalanced shaft of length L = 6 m is integrated in time. As shown in
Fig. 18, a rigid disk is connected to the shaft at mid-span, above the reference
shaft axis by an offset d = 0.05 m. The shaft is made of steel (density ρ =
7800kg/m3, Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3). The cross
section is annular (ri = 0.045 m, ro = 0.05 m). The mass of the disk is md =
70.573kg, the radius is rd = 0.24m, and the thickness is td = 0.05m. The system
is subjected to gravity (g = 9.81 m s−2) directed transversely. The end R of the
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Figure 16: Third eigenvector - Y 2nd
Mode
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Figure 17: Fourth eigenvector - Z 2nd
Mode

Figure 18: Setup of the un-
balanced rotating shaft bench-
mark.
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Figure 19: Mid-point transverse displace-
ment of unbalanced rotating shaft.

shaft is connected to the ground by a cylindrical joint (displacement along and
rotation about the shaft’s axis are permitted). The end T is supported by a
revolute joint; the relative angular velocity about the shaft axis is prescribed as
a function of time,

Ω(t) =


A1ω(1− cos(πt/T1))/2 0 ≤ t ≤ T1

A1ω T1 < t ≤ T2

A1ω + (A2 −A1)ω(1− cos(π(t− T2)/(T3 − T2)))/2 T2 < t ≤ T3

A2ω T3 < t

with A1 = 0.8, A2 = 1.2, T1 = 0.5s, T2 = 1s, T3 = 1.25s, and ω = 60 rad s−1,
close to the first natural frequency of the system. The shaft accelerates from
zero and passes from sub-critical to super-critical regime; when passing through
the first natural bending frequency of the system, lateral oscillations occur and
significant forces take place, as predicted by the linear theory of unbalanced
rotors.

Results plotted in Fig.19 for the case of a 3rd order IGA with nine nodes,
using a second order implicit time stepping integrator, show a good agreement
with reference results obtained with MBDyn.
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Figure 20: Setup of the benchmark for
lateral buckling dynamics.
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Figure 21: Static displacement of the
beam along i2, at the mid point.

9.5. Lateral buckling

This is a benchmark that tests the beam formulation in the context of a dy-
namical problem of difficult integration.

In detail, a flat beam is bent in its plane of highest flexural rigidity, up to the
point where lateral buckling is instantly triggered. In a quasi-static non-linear
analysis, results are visible in Fig. 21. In the context of dynamics, when buckling
occurs, the beam snaps laterally and twists, inducing highly oscillatory motions.
The IGA beam discussed in this paper can capture the nonlinear nature of this
phenomena.

As depicted in Fig. 20, a RC beam with length L = 1m and rectangular
section H = 100mm, B = 10mm, is clamped at the R end point. The snapping
is caused by a tip load at C, generated by mean of a rotating crank GB and
a vertical rod TB, with a spherical joint in C and a revolute joint in B. An
initial imperfection is simulated by introducing a small offset d = 0.1mm in the
off-plane direction i2 between the crank and the vertical bar.

The crank has length Lc = 0.05m and its circular section has diameter
Dr = 24mm, the vertical rod has length Lr = 0.25m and its circular section has
diameter Dr = 48mm. The rotation of the crank is enforced by a prescribed
motion function φc(t) = π(1− cos(πt/Tc))/2, with Tc = 0.4s, then after t > Tc
it holds φc(t) = π.

All parts have Young modulus E = 73GPa and Poisson ratio ν = 0.3. For
the three beams, inertia values Izz and Iyy and torsion constants J are computed
using formulas available in classical textbooks.

In our tests the crank and the rod are modeled with 4 nodes each, using first
order IGA beams, whereas the RC beam is modeled with 12 nodes, using third
order IGA beams.

We performed the dynamical analysis both with a conventional HHT time
integrator and with a DVI time stepper. Comparing the results with the refer-
ence data obtained with MBDyn in Figs. 22 and 23, a remarkable fact is that the
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Figure 22: Displacement of the beam
along i2, at the mid point.
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Figure 23: Angular velocity of the
beam, at the mid point.

lateral buckling is triggered exactly at the same moment for all the formulations,
and the resulting oscillations have the same period. However, as expected, the
DVI time stepper introduces some numerical damping [40]. When using the
HHT second-order implicit time integrator, results are affected by numerical
damping to a lower degree. The drawback of the numerical damping in the
DVI method can still be accepted when its superior stability and its efficiency
in contact problems are attractive, as shown in the following example.

9.6. Contacts with rigid body

This benchmark shows that the proposed IGA beam performs well in a dy-
namical simulation with complex spatial contacts, especially when using the
non-smooth formulation embedded in the DVI time stepper. A bundle of IGA
beams has been fixed between two shafts, one of which is rotating at constant
speed. A fixed central rod has been added, so that it will be wrapped by the
IGA beams during the simulation, see Fig. 24.

The bundle consists in a set of eight beams, each being an IGA beam of third
order with 57 nodes, for a total length of 0.5 m. The section is circular with
a diameter of 0.01 m, the Young modulus is E = 0.5 GPa, the shear modulus
G = 0.35 GPa, the density is ρ = 1000 kg m−3. The internal cylinder diameter
is 0.5 m, while the beams are distributed on a circular pattern of diameter 0.5 m.
The rotation speed is 1 rad s−1.

The interior-point solver used in this simulation is request to achieve a tol-
erance of 1× 10−10 over the residuals and complementarity gap.

The dynamical analysis has been performed using the DVI time stepper.
For this non-smooth dynamics problem, frictional contacts are enforced as com-
plementarity constraints that do not require any tuning of penalty. Note that
when using conventional implicit or explicit integrators for smooth dynamics,
high penalty stiffness would be needed to approximate contact between rigid
materials without contact compenetration, but in turn this requires very short
time steps to avoid numerical instability.

Multiple tests have been run with increasing time steps, from 1 ms up
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(a) Rotation: 0° (b) Rotation: 120°

(c) Rotation: 240° (d) Rotation: 360°

Figure 24: Contact with rigid body (in red, elements that are fixed; in blue, the
rotating shaft; in green, the IGA beams).

to 75 ms. This range includes values that are unusually large for this type
of analysis; just for reference we report that we ran the same benchmark using
the HHT time stepper and penalty contacts, but to avoid divergence the time
step could not be larger than h = 1× 10−5 s.

9.7. Woven mesh

In order to assess the performance of the DVI method for the case of mutual
contact between IGA beams, a woven mesh of IGA beams has been reproduced
and compared to literature [45]. The experiment consists in a 7x7 mesh where
wires are clamped at one end, free at the other. Each wire is modeled with 64
nodes and a third-order IGA rod with cross-sectional radius of 1 mm, Young
modulus E = 10× 108 and Poisson ratio of ν = 0.5, for a total length L =
4Lw = 0.12 m where Lw = 0.03 m is the wavelength of the curve used to weave
the mesh. Because of the non-smooth contact model no additional compliance
parameter is required.

Contact points are computed automatically by the collision engine consid-
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ering a sweep of spheres along the beams.
A distributed load of 0.1 N/m is gradually applied to the beams in the verti-

cal direction, and the DVI method is used to perform a non-linear analysis with
a time step of 10 ms using the Interior-Point solver described in the previous
example. Results are shown in Fig.25. The time step could be increased up
to 50 ms without incurring in divergence. Although the tolerance of the solver
has been kept at the strict threshold of 1× 10−10 on residuals and comple-
mentarity, computational time never exceeded 0.997 s/step on a 2.4 GHz Intel
i7-4700 processor, with the perspective of achieving even faster performance if
lower tolerances can be accepted and if future optimizations will be implemented
in the code.

(a) Load: 0% (b) Load: 30%

(c) Load: 60% (d) Load: 100%

Figure 25: Snapshots from the simulation of the woven mesh, for increasing load.

References

[1] C. Adam, T.J.R. Hughes, S. Bouabdallah, M. Zarroug, and H. Maitournam.
Selective and reduced numerical integrations for NURBS-based isogeomet-
ric analysis. Computer Methods in Applied Mechanics and Engineering,
284:732 – 761, 2015. Isogeometric Analysis Special Issue.

[2] Stuart S. Antman. Kirchhoff’s problem for nonlinearly elastic rods. Quar-
terly of Applied Mathematics, 32(3):221–240, 1974.

35



ProjectCHRONO technical documentation

[3] F. Auricchio, L. Beirão da Veiga, J. Kiendl, C. Lovadina, and A. Reali.
Locking-free isogeometric collocation methods for spatial Timoshenko rods.
Computer Methods in Applied Mechanics and Engineering, 263:113 – 126,
2013.

[4] O. A. Bauchau, G. Wu, P. Betsch, A. Cardona, J. Gerstmayr, B. Jonker,
P. Masarati, and V. Sonneville. Validation of flexible multibody dynamics
beam formulations using benchmark problems. In IMSD 2014, Korea, June
30-July 3 2014.

[5] Olivier A. Bauchau and N. K. Kang. A multibody formulation for helicopter
structural dynamic analysis. Journal of the American Helicopter Society,
38(2):3–14, 1993.

[6] Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric
fluid-structure interaction: theory, algorithms, and computations. Compu-
tational Mechanics, 43(1):3–37, Dec 2008.

[7] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton,
M.A. Scott, and T.W. Sederberg. Isogeometric analysis using T-splines.
Computer Methods in Applied Mechanics and Engineering, 199(5):229 –
263, 2010. Computational Geometry and Analysis.

[8] D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J.R. Hughes. Isogeometric
shell analysis: The Reissner-Mindlin shell. Computer Methods in Applied
Mechanics and Engineering, 199(5-8):276–289, 2010.

[9] Robin Bouclier, Thomas Elguedj, and Alain Combescure. Locking free
isogeometric formulations of curved thick beams. Computer Methods in
Applied Mechanics and Engineering, 245-246:144 – 162, 2012.

[10] Mourad Chamekh, Saloua Mani-Aouadi, and Maher Moakher. Modeling
and numerical treatment of elastic rods with frictionless self-contact. Com-
puter Methods in Applied Mechanics and Engineering, 198(47):3751 – 3764,
2009.

[11] F. Cosserat and E. Cosserat. Théorie des corps déformables. A. Hermann
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A. Plasticity

TO DO: MAYBE REMOVE THIS SECTION. MAY BE USED IN
ANOTHER DOCUMENT MORE FOCUSED ON PLASTICITY.

In the following we expose a primer on plasticity, and we show how this
can be adapted, under some simplifying assumptions and with different levels of
approximation, to Cosserat rods. This can be used to simulate rods that, after
bending, retain their curvature.

An elasto-plastic constitutive model requires the introduction of internal
variables, whose evolution in time t requires numerical integration via a dis-
cretization of t in finite intervals h. 3. In many cases, the internal variable is
just a scalar value expressing the accumulated plastic flow. Anyway, this means
that the implementation of plasticity in a FEA context requires that, at each
Gauss point required for the integration, internal variable(s) must be allocated.

Assuming that the small strain assumption holds, the classical elasto-plastic
theory leads to the following constitutive model:

σ = σ(ε,α) (118)

that is, more in detail:

ε̇ = ε̇e + ε̇p (119)

σ = σ(εe) = ρ
∂φe

∂εe
(120)

A = ρ
∂φe

∂α
(121)

Ψ = Ψ(σ,A) (122)

Φ = Φ(σ,A) (123)

ε̇p = γ̇N(σ,A), N ≡ ∂Ψ

∂σ
(124)

α̇p = γ̇H(σ,A), H ≡ ∂Ψ

∂A
(125)

Φ ≤ 0, γ̇ ≥ 0, Φγ̇ = 0 (126)

In the above model, one has:

� εe is the elastic strain,

� εp is the plastic strain,

3In case of nonlinear static analysis, t can be considered as a scalar variable for the evo-
lution toward equilibrium, hence the same algorithms used for time integration can be used
interchangeably
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� α is the vector of internal variables,

� σ is the stress,

� φe is the Helmholz free energy,

� Ψ(σ,A) is the yeld function, usually convex,

� Φ(σ,A) is the flow potential function, different from Ψ in the generic case
of non-associated flow, but in case of associated flow it is Φ = Ψ.

� γ̇ is called plastic multiplier, that is positive only if Ψ = 0; viceversa Ψ
can be negative only if γ̇ = 0 (hence the complementarity condition, which
can be written also Ψ ≤ 0⊥γ̇ ≥ 0).

� N(σ,A) is the gradient of Ψ respect to σ. A more general definition,
which holds even in case of non differentiable Ψ, uses the subdifferential
notation: N ≡ ∂σΨ.

� H(σ,A) is the gradient of Ψ respect to A. A more general definition,
which holds even in case of non differentiable Ψ, uses the subdifferential
notation: H ≡ ∂AΨ.

The numerical implementation of the above model requires that, at each
integration point of the finite element, a discrete integration is performed. That
is, one computes the resulting stress σ = σ(ε,α) with a function that takes
εn+1, ε

p
n,αn as inputs, and returns σn+1, ε

p
n+1,αn+1 as outputs.

There are different integration methods to do this, explicit or implicit. The
most used integration scheme for the constitutive model, in FEA, is the so
called return mapping scheme, that is an implicit method. Being implicit, it
guarantees that at step n+ 1 the stress is never outside the yield constraint.

The general scheme for the implicit return mapping starts with an elastic
predictor step, then if the stress is outside the yield region, it is projected back
onto the surface of the yield region by incrementing the plastic flow εp, that is,
by decreasing the elastic strain εe. In pseudocode:

εetrialn+1 ← εn+1 − εpn . also: εen + ∆ε
αtrialn+1 ← αn
σtrialn+1 ← σtrialn+1 (εetrialn+1 ), . elastic constitutive model

if Φ(σtrialn+1 ,A
trial
n+1 ) ≤ 0 then

Return σtrialn+1

else
Use Newton Raphson to solve for unknown ∆γ in the following:

Φ(σn+1,An+1) = 0
εen+1 = εetrialn+1 −∆γNn+1

αpn+1 = αtrialn+1 + ∆γHn+1

εpn+1 ← εpn + ∆γNn+1

Return σn+1

end if
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The algorithm requires two fundamental ingredients, i.e. the function that
computes the yield function Φ(σ,A), and the function that evaluates stresses
according to the purely elastic constitutive model as σ = σ(εe). The latter is
often a linear elastic model like σ = Dεe). For the former, however, there are
different options.

In fact, there are two main approaches at defining how Φ(σ,A) evolves
during plasticization: isotropic hardening and kinematic hardening.

A.1. Isotropic hardening

In this case, one assumes that the yield function can be expressed as a difference
Φ(σ,A) = fY (σ,A)−σY by introducing a scalar yield value σY , and assuming
that such yield value increases as a function of the effective plastic strain εp,
also known as accumulated strain:

εp =

∫ t

0

γ̇dt (127)

For example, in 1D plasticity, one has:

Φ(σ,A) = ||σ|| − σY (εp) (128)

Special cases are:

� pure plastic behavior: σY = σY0
, i.e. constant yeld, neither hardening nor

softening.

� linear hardening: σY = σY0
+ Hεp, i.e. one of the most used because it

depends only on two parameters σY0 and H.

� non-linear hardening: σY = σY (εp) with generic function σY (εp), often a
lookup table that linearly interpolates few sample points, starting from a
σY0

point at εp = 0, and growing.

Figures 26 and 27 show a test of an IGA beam in Chrono being pushed-pulled
in a periodic cycle, undergoing 1D linear isotropic hardening.

A.2. Kinematic hardening

In this case, also known as the Bauschinger effect, one assumes that the yield
function is not computed with the stress σ, but rather with a translated version
of it, that is the so called back stress η that is translated by β as a function of
the effective plastic strain εp and/or the plastic strain εp:

η = σ − β(εp, εp) (129)

(130)

There are different methods to update β, in most cases it is integrated from
its derivative β̇. Examples in 3D plasticity:
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Figure 26: Stress-strain plastic cycling
in linear isotropic hardening.
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Figure 27: Time evolution of quanti-
ties in linear isotropic hardening.

� the Prager linear kinematic hardening:

β̇ =
2

3
Hkε̇p

with the kinematic hardening constant Hk;

� the Armstrong-Frederick hardening:

β̇ =
2

3
Hkε̇p − γ̇bβ

with the kinematic hardening constantHk and a b parameter that accounts
for a saturation effect;

� the non-linear Prager kinematic hardening:

β̇ =
2

3
Hk(εp)ε̇p

with a given scalar function β(εp) such that one has non-linear Hk(εp) =
dβ(εp)
dεp

For example, in simple 1D plasticity, one can make β as a simple scalar
function of εp, so that:

Φ(σ,A) = ||σ − β(εp)|| − σY0
(131)

Special 1D cases are:

� pure plastic behavior: β = 0, i.e. constant yeld, neither hardening nor
softening.

� linear kinematic hardening: β = Hkε
p, i.e. one of the most used because

it depends only on a single parameter B.
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� non-linear kinematic hardening: β = β(εp) with generic function β(εp),
often a lookup table that linearly interpolates few sample points, starting
from 0 at εp = 0, and growing.

Figures 28 and 29 show a test of an IGA beam in Chrono being pushed-pulled
in a periodic cycle, undergoing 1D linear kinematic hardening.
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Figure 28: Stress-strain plastic cycling
in linear kinematic hardening.
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Figure 29: Time evolution of quanti-
ties in linear kinematic hardening.

A.3. Mixed isotropic-kinematic hardening

In this most generalized case, one introduces both isotropic and kinematic hard-
enings as:

η = σ − β(εp, εp) (132)

Φ(σ,A) = fY (η,A)− σY (εp) (133)

(134)

That is, one has to input two (nonlinear, or linear) scalar functions R → R
for:

σY = σY (εp) (135)

β = β(εp) (136)

The meaning of the two functions, at least for simple 1D plasticity, is shown
in figures 30 and 32.

The full elasto-plastic constitutive model of the material, then, is represented
by two data sets. For the plastic data: two functions σY (εp) and β(εp). For
the elastic data: all the various properties for the elastic constitutive model
σ = σ(εe), for instance the Young modulus E, the shear modulus G, etc. Note
that the elastic and the plastic properties are independent objects in Chrono,
so they can be mixed in different ways.
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Figure 30: The σY = σY (εp) user-
defined function.
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Figure 31: Example: effect of the
isotropic hardening on a load/unload
cycle.
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Figure 32: The β = β(εp) user-defined
function.
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Figure 33: Example: effect of the kine-
matic hardening on a load/unload cy-
cle.
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