
ProjectCHRONO technical documentation

Rotations in Chrono::Engine

Alessandro Tasora
alessandro.tasora@unipr.it

January 30, 2020

Abstract

This covers some theoretical aspects about rotations in 3D. The main formulas
that are implemented in Chrono::Engine for handling rotations are presented in this
document. Rotations are mostly dealt via quaternion algebra in Chrono::Engine , so
here we also provide an introductory section on quaternions and quaternion algebra
in general.

1. Quaternions

Quaternions represent the preferred method for parametrizing rotations in
Chrono::Engine API.

They are implemented in the chrono::ChQuaternion class and they are
used extensively through all the code. For instnce they are used for expressing
the rotations of rigid bodies: chrono::ChBody.

Quaternions algebra plays a fundamental role in computational mechanics
as they represent a very useful tool to express rotations of coordinate systems
[1, 2, 3].

Differently from other systems of parametrization based on three angles,
they do not suffer problems of singularity when converted from/to a rotation
matrix A ∈ SO3.

Moreover their algebra allow a compact set of formulas for rotating points,
and to operate with angular velocity and angular acceleration.

For the above mentioned reasons, quaternions are widely used in the
Chrono::Engine API. In the following we will report the main formulas im-
plemented in it.

1

http://api.chrono.projectchrono.org/classchrono_1_1_ch_quaternion.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_body.html

ProjectCHRONO technical documentation

2. Elements of quaternion algebra

Quaternion algebra is a non-commutative field H(·,+), as such it has the neutral
element and it has associative and distributive properties both for multiplication
and addition, but, differently from real and complex algebras, it is commutative
only respect to addition.

They are complex numbers with three imaginary units and one real unit,
from the data storage point of view they are vectors with four dimensions.

Usually they are written as q ∈ H e q0, q1, q2, q3 ∈ R:

q = (q0 + q1 · i+ q2 · j + q3 · k) (1)

where the three imaginary units i, j, k have the following properties:

i2 = −1 (2a)

j2 = −1 (2b)

k2 = −1 (2c)

i · j · k = −1 (2d)

i · j = −j · i = k (2e)

j · k = −k · j = i (2f)

k · i = −i · k = j (2g)

Properties of Eq.(2) can be reassumed in Table (1) that shows the multipli-
cation rules for the bases.

· 1 i j k

1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

Table 1: Rules for products among {1,−1, i,−i, j,−j, k,−k}

The properties above define also products and sums between quaternions.
In detail, the sum or difference between a ∈ H and b ∈ H gives a quaternion

c ∈ H with this rule:

c = a± b =

= (a0 + a1 · i+ a2 · j + a3 · k)± (b0 + b1 · i+ b2 · j + b3 · k) =

= (a0 ± b0)± (a1 ± b1) · i± (a2 ± b2) · j ± (a3 ± b3) · k (3)

Note that the sum is commutative:

a± (b± c) = (a± b)± c (4a)

a± b = b± a (4b)

2

ProjectCHRONO technical documentation

The product between quaternions a ∈ H and b ∈ H gives a quaternion c ∈ H
with the following rule:

c = a · b =

= (a0 + a1 · i+ a2 · j + a3 · k) · (b0 + b1 · i+ b2 · j + b3 · k) =

= (a0b0 − a1b1 − a2b2 − a3b3)+

+ (a0b1 + a1b0 + a2b3 − a3b2) · i+
+ (a0b2 − a1b3 + a2b0 + a3b1) · j+
+ (a0b3 + a1b2 − a2b1 + a3b0) · k (5)

The product is associative and distributive. Except rare cases, it is not
commutative, though:

a (b c) = (a b) c (6a)

a b 6= b a (6b)

We also introduce the product between a quaternion and a scalar: for in-
stance between q ∈ H and s ∈ R gives r ∈ H according to:

r = q s =

= q (s+ 0i+ 0j + 0k)

= (s q0 + s q1 i+ s q2 j + s q3 k) (7)

This product by a scalar is commutative:

a s = s a (8a)

a 1 = 1 a (8b)

s z a = z s a (8c)

a (sb+ zc) = s a b+ za c (8d)

The conjugate of a quaternion, similarly to the conjugate of a complex num-
ber, is obtained by flipping the sign of the imaginary unit:

q = (q0 + q1i+ q2j + q3k)

q ∗ = (q0 − q1i− q2j − q3k) (9)

The following properties hold:

(a∗)∗ = a (10a)

(a b)∗ = b∗ a∗ (10b)

(a+ b)∗ = a∗ + b∗ (10c)

3

ProjectCHRONO technical documentation

A very important property is related to the product of a quaternion by its
conjugate: in such case, the result corresponds to a quaternion with only the
real part:

q q ∗ = (q2
0 + q2

1 + q2
2 + q2

3) (11a)

q q ∗ = q ∗ q = s ∈ R (11b)

Property (11) can be easily demonstrated using definitions (5) and (9).
Multiplication by a conjugate can be used also to define the norm of a

quaternion, similar to the euclidean norm in R4:

|q| =
√
q q ∗ (12a)

|q| =
√

(q2
0 + q2

1 + q2
2 + q2

3) (12b)

By introducing the || norm, the quaternion algebra H(·,+, ||) becomes a
Banach algebra, with metric space H).

The following properties hold:

|q| ≥ 0 (13a)

|q| = 0⇔ q = (0 + 0i+ 0j + 0k) (13b)

|sq| = s|q| (13c)

|q + r| ≤ |q|+ |r| (13d)

|qr| = |q||r| (13e)

Quaternion algebra is a divisional algebra because for each q 6= 0, one can
compute the inverse q−1 such that q−1q = 1. In fact, since for (11) and (12)
one has (qq ∗/|q|2) = 1, it is easy to demonstrate that:

q−1 = q ∗
1

|q|2
(14)

In sake of computational efficiency, remember that the inverse of an unim-
dular quaternion is simply its conjugate:

|q| = 1 ⇒ q−1 = q ∗ (15)

3. Alternative notations

It is useful to recall that, other than the notation in (1), there are other notations
to express quaternions. In detail, the original notation by Hamilton puts in

4

ProjectCHRONO technical documentation

evidence the so called scalar part s ∈ R and the imaginary vectorial part v ∈
ImH, with H = R⊕ ImH:

q = (s,v) (16)

This notation 1 allows a more compact expression for the addition and mul-
tiplication formulas (3) e (5):

a± b = (sa ± sb,va ± vb) (17a)

ab = (sasb − va · vb, savb + sbva + va × vb) (17b)

where we used the symbols of scalar product (·) and of vector product (×) as
already used for vectors in R3.

A quaternion with an imaginary part only, q = (0,v), is said pure quaternion
or imaginary, whereas a quaternion with a real part only is said real quaternion.

Another representation of quaternions can be done using column vectors
with four dimensions:

q = {q0, q1, q2, q3}T (18)

Such notation is expecially useful when one wants to perform quaternion
algebra using the tools of matrix multiplication as in linear algebra.

In such a context, using (5), the product between two quaternions is repre-
sented by a product of a 4x4 matrix an a 4x1 vector, as follows:

ab = c
+a0 −a1 −a2 −a3

+a1 +a0 −a3 +a2

+a2 +a3 +a0 −a1

+a3 −a2 +a1 +a0



b0
b1
b2
b3

 =


c0
c1
c2
c3

 (19)

For compactness we introduce [M⊕] e [M]:

a b = c ⇔ [M(a)⊕] b = [M(b)]a (20a)

[M(a)⊕] =


+a0 −a1 −a2 −a3

+a1 +a0 −a3 +a2

+a2 +a3 +a0 −a1

+a3 −a2 +a1 +a0

 (20b)

[M(b)] =


+b0 −b1 −b2 −b3
+b1 +b0 +b3 −b2
+b2 −b3 +b0 +b1
+b3 +b2 −b1 +b0

 (20c)

1The q = (s,v) notation is expecially used in computer graphics

5

ProjectCHRONO technical documentation

4. Rotations

Lets consider p ∈ H→ p ′ ∈ H, transforming p into quaternion p ′:

p ′ = q p q ∗ (21)

Form the property (13e) it follows that

|p ′| = |q||p||q ∗| (22)

When using quaternions q of unit length only, (unitary quaternions), it
happens that the norm of p is not modified by the transformation, as |p ′| =
|q||p||q ∗| = 1|p|1.

Therefore when |q| = 1, the endomorphism (21) operates a rotation of the
p quaternion.

Even more interesting is the case where p ∈ ImH, because in such a case, for
|q| = 1, even the transformed quaternion has only an imaginary part: p ′ ∈ ImH.

This means that one can use the notation (21) to express a rotation of a
vector v (a position of a point in three dimensional space) into a rotated vector
v ′, simplyassuming p = (0,v):

p ′ = q p q ∗

(0,v ′) = q (0,v) q ∗ (23)

Sequences of rotations can be expressed shortly in the same way. For exam-
ple, rotating p in p ′ by means of qa, and later rotating p ′ in p ′ ′ by means of
qb, one has:

p ′ = qa p qa
∗

p ′ ′ = qb p
′qb
∗

p ′ ′ = (qb qa) p (qa
∗qb
∗)

More in general, remembering (10b), given n rotations expressed by
q1, . . . , qn, quaternions, one has:

p ′ = qs p qs
∗ (24)

where qs = (qn, . . . , q2, q1).
Obviously, as quaternion multiplication is not commutative, it follows that

is it not possible to change the order of the terms q1, . . . , qn.
The inverse transformation is obtained by premultiplying the two terms of

(21) by q ∗ and by post-multiplying by q, obtaining q ∗p ′q = q ∗q p q ∗q. Given
that q ∗q = qq ∗ = 1, we have:

p ′ = q p q ∗

p = q ∗p ′ q (25)

6

ProjectCHRONO technical documentation

We looked at how (21) makes a rotation by means of two simple quaternion
multiplications; it is interesting to pair this with other equivalent, maybe more
classical, means of computing rotations.

For example given a rotation matrix [A] for the well known transformation
v ′ = [A]v, it is often needed to find the quaternion q that makes the same
rotation in (0,v ′) = q (0,v)q ∗, or viceversa.

Therefore, we express (21) wit linear algebra, using (20). One obtains:

p ′ = [M(q)⊕] (p q ∗)

= [M(q)⊕] [M(q ∗)]p

=


+q0 −q1 −q2 −q3

+q1 +q0 −q3 +q2

+q2 +q3 +q0 −q1

+q3 −q2 +q1 +q0




+q0 +q1 +q2 +q3

−q1 +q0 −q3 +q2

−q2 +q3 +q0 −q1

−q3 −q2 +q1 +q0

p (26a)

=


q2
0 + q2

1 + q2
2 + q2

3 0 0 0
0 q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q3q0) 2(q1q3 + q2q0)

0 2(q1q2 + q3q0) q2
0 − q2

1 + q2
2 − q2

3 2(−q1q0 + q2q3)
0 2(q1q3 − q2q0) 2(q1q0 + q2q3) q2

0 − q2
1 − q2

2 + q2
3

p
(26b)

Finally, as we are interested in the imaginary part only of p ′ = (0,v ′), we
suppress the first row and column and obtin the following linear transformation
with a 3x3 rotation matrix:

v ′ =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) q2

0 − q2
1 + q2

2 − q2
3 2(−q1q0 + q2q3)

2(q1q3 − q2q0) 2(q1q0 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

v (27a)

v ′ = [A(q)]v (27b)

Note that the [A(q)] matrix can be also expressed as a product between two
matrices [F (q)⊕] and [F (q)], obtained as submatrices of [M(q)⊕] e

[
M(q)∗	

]
in (26a):

v ′ =

+q1 +q0 −q3 +q2

+q2 +q3 +q0 −q1

+q3 −q2 +q1 +q0




+q1 +q2 +q3

+q0 −q3 +q2

+q3 +q0 −q1

−q2 +q1 +q0

v (28a)

v ′ = [F (q)⊕] [F (q)]
T
v (28b)

7

ProjectCHRONO technical documentation

where

[A(q)] = [F (q)⊕] [F (q)]
T

(29a)

[F (q)⊕] =

+q1 +q0 −q3 +q2

+q2 +q3 +q0 −q1

+q3 −q2 +q1 +q0

 (29b)

[F (q)] =

+q1 +q0 +q3 −q2

+q2 −q3 +q0 +q1

+q3 +q2 −q1 +q0

 (29c)

Algorithm 1: Computes quaternion q given [A] matrix
Input: matrix [A]
Output: quaternion q
(1) tr = A0,0 + A1,1 + A2,2 matrix trace
(2) if tr ≥ 0
(3) s =

√
tr + 1

(4) q0 = 0.5s
(5) s = 0.5/s
(6) q1 = (A2,1 − A1,2) ∗ s
(7) q2 = (A0,2 − A2,0) ∗ s
(8) q3 = (A1,0 − A0,1) ∗ s
(9) else
(10) i = 0
(11) if A1,1 > A0,0

(12) i = 1
(13) if A2,2 > A1,1 then i = 2
(14) else i = 1
(15) else
(16) if A2,2 > A0,0 then i = 2
(17) if i == 0

(18) s =
√
A0,0 − A1,1 − A2,2 + 1

(19) q1 = 0.5s
(20) s = 0.5/s
(21) q2 = (A0,1 + A1,0)s
(22) q3 = (A2,0 + A0,2)s;
(23) q0 = (A2,1 − A1,2)s;
(24) if i == 1

(25) s =
√
A1,1 − A2,2 − A0,0 + 1

(26) q2 = 0.5s
(27) s = 0.5/s
(28) q3 = (A1,2 + A2,1)s
(29) q1 = (A0,1 + A1,0)s
(30) q0 = (A0,2 − A2,0)s
(31) if i == 2

(32) s =
√
A2,2 − A0,0 − A1,1 + 1

(33) q3 = 0.5s
(34) s = 0.5/s
(35) q1 = (A2,0 + A0,2)s
(36) q2 = (A1,2 + A2,1)s
(37) q0 = (A1,0 − A0,1)s
(38) return q

Just like it is possible to obtain a matrix of rotation [A(q)] given a q quater-
nion, it is possible also to do viceversa: obtaining q given a 3x3 matrix [A(q)].
This is more complex, but still it does not presents problems of singularity. The
transformation is expressed by Algorithm 1 that outputs q as a function of [A].

Interesting: for a quaternion there is a single rotation matrix [A(q)], vicev-
ersa given a [A] matrix one can compute two quaternions, with opposite signs.

8

ProjectCHRONO technical documentation

x

 y

 z

 u
 v

 v

 v

 v

 Φ Φ

 v’

Figure 1: Rotation of v about an axis u

In fact one can easily verify that from (27a) it follows:

[A(q)] = [A(−q)] (30)

5. Rotation axis

It is known that one can express a finite rotation by providing an angle of rota-
tion φ about an axis expressed as a unit-length vector u, and this is equivalent
to the following unimodular quaternion:

q0 = cos

(
φ

2

)
(31a)

q1 = ux sin

(
φ

2

)
(31b)

q2 = uy sin

(
φ

2

)
(31c)

q3 = uz sin

(
φ

2

)
(31d)

One can see that the norm of such quaternion is unitary for whatever value
of φ and u, because of the property sin2(α) + cos2(α) = 1 e |u| = 1, in fact
|q|2 = cos2(φ/2) + (u2

x + u2
y + u2

z) sin2(φ/2) = 1.
Among the many proofs that (23) expresses a rotation, for the interested

reader here we report a geometric proof, inspired by Figure 1; remembering the
property cos(φ) = cos2(φ/2)− sin2(φ/2), sin(φ) = 2 sin(φ/2) cos(φ/2), cos(φ) =

9

ProjectCHRONO technical documentation

1− 2 sin2(φ/2), one has:

p ′ =(0,v ′) = q p q ∗

=
(

cos
φ

2
,u sin

φ

2

)(
0,v
)(

cos
φ

2
,−u sin

φ

2

)
=
(
− sin

φ

2
(u · v), cos

φ

2
v + sin

φ

2
(u× v)

)(
cos

φ

2
,−u sin

φ

2

)
=
(
− sin

φ

2
cos

φ

2
(u · v) + sin

φ

2
cos

φ

2
(v · u)− sin2 φ

2
(u× v) · u,

sin2 φ

2
(u · v) · u+ cos2 φ

2
v

+ sin
φ

2
cos

φ

2
(u× v)− sin

φ

2
cos

φ

2
(v × u)− sin2 φ

2
(u× v)× u

)
=
(

0, sin2 φ

2
(u · v)u+ cos2 φ

2
v + 2 sin

φ

2
cos

φ

2
(u× v)− sin2 φ

2
(v − (u · v)u

)
=
(

0, 2 sin2 φ

2
(u · v)u+ cos2 φ

2
v − sin2 φ

2
v + 2 sin

φ

2
cos

φ

2
(u× v)

)
=
(
0, (1− cosφ)(u · v)u+ cosφv + sinφ(u× v)

)
=
(
0, (u · v)u+ cosφ(v − (u · v)u) + sinφ(u× v)

)
The result, v ′ = (u·v)u+cosφ(v−(u·v)u)+sinφ(u×v), matches the result

that one could obtain by directly using Figure 1 and using vector operations (in
figure, v1 = (u · v)u, v2 = v − v1 and v3 = u× v2 = u× v).

It is also possible to do the inverse process, i.e. obtaining angle and axis
of rotation given a quaternion, although one might incur into a singularity for
φ = 0± n2π, n ∈ N:

φ = 2 cos−1(q0) (32a)

v =

q1

q2

q3

 1

sin φ
2

(32b)

6. Angular velocity

One can use quaternion algebra also to compute velocity and acceleration of
points belonging to coordinate system subject to angular velocity and angular
acceleration.

By simple time derivative of (0,v ′) = q (0,v)q ∗ it is possible to obtain
absolute velocity v̇ of the point. Using the notation q̇ = dq/dt:

p ′ = (0,v ′) = q p q ∗

ṗ ′ = (0, v̇ ′) =
d (q p q ∗)

dt
ṗ ′ = q̇ p q ∗ + q p q̇ ∗ + q ṗ q ∗ (33)

10

ProjectCHRONO technical documentation

as follows from the rule of derivative for the product of quaternions:

d (qa qb) /dt = q̇a qb + qa q̇b

Sometimes (33) cannot be used directly because often one does not know q̇,
but rather knows the angular velocity. So it is necessary to obtain a relation
between q̇ and ωo (the vector of angular velocity expressed in absolute reference)
or between q̇ and ωl (the vector of angular velocity expressed in the local rotated
reference).

To this end let consider v ′ = [A(q)]v, let performthe factorization (29a)
and take the time derivative. Since it is d[F (q)⊕]/dt = [Ḟ (q)⊕] = [F (q̇)⊕] and
d[F (q)]/dt = [Ḟ (q)] = [F (q̇)], one has:

v ′ = [F (q)⊕][F (q)]Tv

v̇′ = [Ḟ (q)⊕][F (q)]Tv + [F (q)⊕][Ḟ (q)]Tv + [F (q)⊕][F (q)]T v̇ (34)

By performing the product between the two matrices, it is easy to show that
in general [F (qa)⊕][F (qb)]T = [F (qb)⊕][F (qa)]T , hence (34) becomes:

v̇′ = 2[Ḟ (q)⊕][F (q)]Tv + [F (q)⊕][F (q)]T v̇ (35)

At the same time it also holds:

v ′ = [A(q)]v

v̇′ = [Ȧ(q)]v + [A(q)]v̇ (36a)

v̇′ = [A(q)](ωl × v) + [A(q)]v̇ (36b)

where in (36b) we used ωl, i.e. angular speed in the local rotated reference, as
shown in many textbooks.

Equations (35) can be also compared to (36a) and (36b). From this compar-
ison, remembering [A(q)] = [F (q)⊕][F (q)]T and ωl × v = [ω̃l]v, one obtains
the following ways to express [Ȧ(q)]:

[Ȧ(q)] = 2[Ḟ (q)⊕][F (q)]T (37a)

= 2[F (q)⊕][Ḟ (q)]T (37b)

= [A(q)][ω̃l] = [F (q)⊕][F (q)]T [ω̃l] (37c)

= [ω̃o][A(q)] = [ω̃o][F (q)⊕][F (q)]T (37d)

Remember, in general [Ȧ(q)] 6= [A(q̇)].
To proceed further, we report the following properties, that hold only for

unimodular quaternions, that is when q2
0 + q2

1 + q2
2 + q2

3 = 1:

[F (q)⊕][F (q)⊕]T = [F (q)][F (q)]T = [I] (38a)

[F (q)⊕]T [F (q)⊕] = [F (q)]T [F (q)] = ([I]− q ∗q ∗T) (38b)

11

ProjectCHRONO technical documentation

Using (36b), (37b) and (37c) we obtain:

[A(q)](ωl × v) = [Ȧ(q)]v

[A(q)][ω̃l]v = [Ȧ(q)]v

[ω̃l] = [A(q)]T [F (q)⊕][Ḟ (q)]T (39)

Substituting [A(q)]T = [F (q)][F (q)⊕]T in (39), because of (29a), then re-
membering (38b), one can write:

[ω̃l] = 2[F (q)][F (q)⊕]T [F (q)⊕][Ḟ (q)]T

[ω̃l] = 2[F (q)]([I]− q ∗q ∗T)[Ḟ (q)]T (40)

Since [F (q)]q = 0, one can simplify (40):

[ω̃l] = 2[F (q)][Ḟ (q)]T (41)

Simplifying the multiplications in (41) and remembering the definition of
the hemi-symmetric matrix [ω̃l], one can finally obtain ωl as a function of the
derivative of quaternion q̇, in the following equivalent ways:

ωl = −2[F (q)]q̇ ∗ = +2[F (q ∗)⊕]q̇ (42a)

= +2[F (q̇)]q ∗ = −2[F (q̇ ∗)⊕]q (42b)

At the same time one can express ωo, angular velocity in absolute reference,
remembering that ωl = [A(q)]Tωo:

ωo = −2[F (q)⊕]q̇ ∗ = +2[F (q ∗)]q̇ (43a)

= +2[F (q̇)⊕]q ∗ = −2[F (q̇ ∗)]q (43b)

As an alternative to matrix expressions (42a), (42b), (43a), (43b), it is pos-
sible to obtain ωl and ωo using only the quaternion algebra. Introducing the
following pure quaternions: qωl

= (0,ωl) qωo
= (0,ωo), with qωo

, qωl
∈ ImH.

Let compare v̇′ = ωo × vo + [A]v̇ with (33), and recall that for (25) one has
p = qs

∗p ′ qs:

q̇ p q ∗ + q p q̇ ∗ = (0,ωo × vo)
q̇ q ∗ p ′ q q ∗ + q q ∗ p ′ q q̇ ∗ = (0,ωo × vo)

By making use of the property qq ∗ = 1 and of the time derivative of such
property q̇q ∗ + qq̇ ∗ = 0, one gets the simplified expression:

q̇ q ∗ p ′ − p ′ q q̇ ∗ = (0,ωo × vo) (44)

Also, given the multiplicative properties (17b), the pure quaternion (0,ωo×
vo) can be expressed in the form 1

2 [(0,ωo)p
′ − p ′(0,ωo)], obtaining:

q̇ q ∗ p ′ − p ′ q q̇ ∗ =
1

2
[(0,ωo)p

′ − p ′(0,ωo)]

12

ProjectCHRONO technical documentation

From this relation one obtains2

(0,ωo) = 2 q̇ q ∗ (45)

Since for unimodular quaternions q−1 = q ∗, one also gets the inverse relation:

q̇ =
1

2
(0,ωo) q (46)

Equally useful as (45) and (46) are the analogous relations that use angular
velocities in the local reference ωl, substituting (0,ωo) = q (0,ωl) q

∗ in (46)
and simplifying:

(0,ωl) = 2 q ∗ q̇ (47a)

q̇ =
1

2
q (0,ωl) (47b)

As an alternative, by using matrix algebra and remembering (20), (29b) and
(29c), one can express (46) and (47b) as:

q̇ =
1

2
[F (q ∗)]Tωo (48a)

q̇ =
1

2
[F (q ∗)⊕]Tωl (48b)

7. Angular acceleration

By performing a second time derivative, one can get the relation between the
angular acceleration α = ω̇ and the quaternion double derivative q̈.

In detail lets introduce the pure quaternion qαl
= (0,αl) to express the

angular acceleration in local coordinates, and qαo
= (0,αo) for the angular

acceleration in absolute coordinates.. By taking the derivative in (46) and (47b),
one obtains the two equivalent expressions:

q̈ =
1

2
(0,αo) q +

1

2
(0,ωo) q̇ (49a)

q̈ =
1

2
q̇ (0,ωl) +

1

2
q (0,αl) (49b)

It is possible to obtain the inverse relations too, to get αl or αo given the
quaternion q̈. To this end lets take the time derivative of (45) and (47a):

(0,αo) = 2 q̈ q ∗ + 2 q̇ q̇ ∗ (50a)

(0,αl) = 2 q̇ ∗ q̇ + 2 q ∗ q̈ (50b)

2Equation (44) provides only the imaginary part of (0,ωo); but it would hold also for a
generic (a,ωo), with watever a. The fact that a follows from the fac that, given |q| = 1, one
gets q̇0q0 + q̇1q1 + q̇2q2 + q̇3q3 = 0. It follows that the real part of q̇q∗ or q∗q̇ is null.

13

ProjectCHRONO technical documentation

Of course one can express the same relations by using the matrix algebra,
for instance performing the derivative of (42a) and (43a):

αl = −2[F (q)]q̈ ∗ − 2[F (q̇)]q̇ ∗ (51a)

αo = −2[F (q)⊕]q̈ ∗ − 2[F (q̇)⊕]q̇ ∗ (51b)

Note that the computation of the 2[F (q̇)]q̇ ∗ and 2[F (q̇)⊕]q̇ ∗ terms is su-
perfluous as they are always null (this can be verified by remembering that
q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 = 0, as follows by taking the time derivative of the
constraint over the unit norm: qq ∗ = 1).

Moreover, by taking the time derivative of (48a) and (48b), one obtains also:

q̈ =
1

2
[F (q̇ ∗)]Tωo +

1

2
[F (q ∗)]Tαo (52a)

q̈ =
1

2
[F (q̇ ∗)⊕]Tωl +

1

2
[F (q ∗)⊕]Tαl (52b)

Note that the acceleration of a point given q̇ and q̈ can be derived directly
by taking the time derivative of (33):

p̈ ′ = q̈ p q ∗ + q̇ p q̇ ∗ + q̇ ṗ q ∗ + q̇ ṗ q ∗ + q ṗ q̇ ∗ + q p̈ q ∗ + q̇ p q̇ ∗ + q p q̈ ∗ + q ṗ q̇ ∗

= q̈ p q ∗ + q p̈ q ∗ + q p q̈ ∗ + 2 q̇ p q̇ ∗ + 2 q̇ ṗ q ∗ + 2 q ṗ q̇ ∗ (53)

The results obtained herein are summed up in the following table (2), for a
rapid and concise reference.

8. Lie groups, exponentials and relation with other
representations

Rotations in 3D can be approached with the tools of Lie groups and Lie algebras.
The following is a list of useful concepts in Lie groups in the context of rotations.

• A Lie group is a group G that is also a differentiable manifold. As a
group it is an algebraic structure with properties of closure, associativity,
presence of identity element and inverse element for product between its
elements. Examples:

– Rn, the Euclidean space with addition,

– GL(n,R), the general linear group of invertible nxn matrices and their
product,

– SL(n,R), the special linear group of matrices with det = 1,

– SO(n), the special orthogonal group of orthogonal matrices with
det = 1,

– SU(n), the special unitary group of complex matrices with det = 1,

14

ProjectCHRONO technical documentation

Quaternion algebra Matrix algebra

Coordinate
transforma-
tion

(rotation
only)

p ′ = q p q∗ , p = (0,v) v ′ = [A]v

ṗ ′ = q̇ p q∗ + q p q̇∗ + q ṗ q∗ v̇ ′ = [Ȧ(q)]v + [A(q)]v̇

[Ȧ(q)] = [A(q)][ω̃l]

p̈ ′ = q̈ p q∗ + q p̈ q∗ + q p q̈∗+

+2 q̇ p q̇∗ + 2 q̇ ṗ q∗ + 2 q ṗ q̇∗
v̈ ′ = [Ä(q)]v + 2[Ȧ(q)]v̇ + [A(q)]v̈

[Ä(q)] = [A(q)][ω̃l][ω̃l] + [A(q)][α̃l]

ω to q̇

q̇ = 1
2
(0,ωo) q q̇ = 1

2
[F (q∗)]Tωo

q̇ = 1
2
q (0,ωl) q̇ = 1

2
[F (q∗)⊕]Tωl

q̇ to ω

(0,ωo) = 2 q̇ q∗ ωo = 2 [F (q∗)]q̇

(0,ωl) = 2 q∗ q̇ ωl = 2 [F (q∗)⊕]q̇

α to q̈

q̈ = 1
2
(0,αo) q + 1

2
(0,ωo) q̇ q̈ = 1

2
[F (q̇∗)]Tωo + 1

2
[F (q∗)]Tαo

q̈ = 1
2
q̇ (0,ωl) +

1
2
q (0,αl) q̈ = 1

2
[F (q̇∗)⊕]Tωl +

1
2
[F (q∗)⊕]Tαl

q̈ to α

(0,αo) = 2 q̈ q∗ + 2 q̇ q̇∗ αo = 2 [F (q∗)]q̈

(0,αl) = 2 q̇∗ q̇ + 2 q∗ q̈ αl = 2 [F (q∗)⊕]q̈

Table 2: Main relations for angular acceleration and angular velocity, and
quaternions

– H1, the group of unit-length quaternions, also compact symplectic
group Sp(1),

– Spin(n), the spin group.

For kinematics and dynamics, the SO(3) special orthogonal group is im-
portant as it deals with rotation matrices in 3D space.

• For rotations in 2D, a rotation α can be expressed by a unit-length complex
number eiα in the C1 group, also U(1), and Spin(2). Topologically this is
the circle S1. All them are isomorphic to SO(2).

• For rotations in 3D, H1, SU(2) and Spin(3) are all isomorphic, and simply
connected. All them are topologically the S3 sphere. All them are double
covers of SO(3), which is double connected. A practical consequence: two
opposite quaternions −ρ and +ρ ∈ H1 represent the same single rotation
matrix R ∈ SO(3).

• A Lie algebra is a vector space g equipped with a non-associative alter-
nating bilinear map g× g→ g; (x, y) 7→ [x, y], named Lie bracket.

• Given a Lie group G, the tangent bundle at the identity T1G, together
with a Lie bracket, forms the Lie algebra g of the Lie group G. Examples:

– the Lie algebra of U(1) is u(n), isomorphic to R;

15

ProjectCHRONO technical documentation

– the Lie algebra of SO(n) is so(n), the algebra of skew-symmetric nxn
real matrices,

– the Lie algebra of H1 is Im(H), the algebra of pure quaternions
(quaternions with no real part),

– in particular, the Lie algebras of SO(3), SU(3), Spin(3) and H1 are all
isomorphic to the Lie algebra so(3), the algebra of skew symmetric
3x3 matrices ã such that ãb = a× b.

• Let γ : R→ G be a one parameter sub-group of G, i.e. for which γ(0) = I,
the identity element in G. The exponential map exp : g → G is defined
as exp(ω) = γ(1), for ω ∈ g. One can see that exp(tω) = γ(t), and that
γ̇(0) = ω. In practical terms, the exponential map connects elements in
Lie algebras to underlying Lie groups.

• For an element R in Lie group SO(3) and an element δΘ in the corre-
sponding Lie algebra so(3), one has

R = exp(δΘ) (54)

δΘ = log(R) (55)

• One can extract the three dimensional rotation pseudovector δθ from δΘ
and vice versa, via

δθ = axis(δΘ) (56)

δΘ = skew(δθ) = δθ̃ (57)

For our purposes, δθ can be considered a (not necessarily infinitesimal)
incremental rotation; for example in a time stepper one could have δθ =
ωdt.

• Just like in (54) and (55), an exponential map links H1, (unit quaternions),
and its Lie algebra Im(H) of pure quaternions δρ = [0, δv]:

ρ = exp(δρ) (58)

δρ = log(ρ) (59)

• The exponential map (58) can be explicitly computed using the closed-

form expression exp([s,v]) = es
[
cos(||v||), v

||v|| sin(||v||)
]
, hence:

exp([0, δv]) =

[
cos(||δv||), δv

||δv||
sin(||δv||)

]
(60)

exp([0,uβ]) = [cos(β),u sin(β)] for ||u|| = 1 (61)

• We can use the pure and imag operators to convert pure quaternions [0, δv]
from and to rotation pseudovectors δθ by observing that δv = 1

2δθ:

δθ = 2 imag(δρ) (62)

δρ =
1

2
pure(δθ) (63)

16

ProjectCHRONO technical documentation

• More succinctly, we can introduce the axis and qskew operators:

δθ = axis(δρ) (64)

δρ = qskew(δθ) (65)

• To pass directly from rotation pseudovector δθ to quaternion ρ = [s,v],
and viceversa, one can write:

ρ = exp(δρ) = exp(qskew(δθ)) =

[
cos

(
||δθ||

2

)
,
δθ

||δθ||
sin

(
||δθ||

2

)]
(66)

δθ = axis(δρ) = axis(log(ρ)) = 2
v

||v||
tan−1

(
||v||
s

)
(67)

Note that the last expression is singular for zero rotations, so when ||v|| < ε
one can compute it as the simplified expression δθ = 2v, also note that
rather than using tan−1() it is advisable to use atan2().

Functions (66) and (67) are available in the chrono::ChQuaternion class
as Q to Rotv and Q from Rotv, respectively.

• The scalar exponential of a quaternion is

q t = [cos(β),u sin(β)]
t

= exp ([0,uβ])
t

= exp ([0,uβt])

q t = [cos(βt),u sin(βt)] (68)

9. Other properties

9.1 Normalization of quaternions

Only unimodular quaternions |qn| = 1 can be used for expressing rotations,
q ∈ S3. Sometimes, however, it might happen that numerical roundoff errors,
or approximations in time integration schemes, or other sources of numerical
errors, will gradually introduce a drift on quaternions, that gradually depart
from the unit hypersphere. Hence it may be necessary to periodically check
that quaternions really have unit norm, and if not, they should be normalized
using a formula that exploits the (13c) property:

qn = qε
1

|qε|
(69)

9.2 Interpolating quaternions

Interpolating finite rotations in 3D space is not trivial. One cannot just do a
linear interpolation of qa and qb with a formula like q(t) = (1 − t)qa + tqb,

17

http://api.chrono.projectchrono.org/classchrono_1_1_ch_quaternion.html

ProjectCHRONO technical documentation

because it does not guarantee that q(t) ∈ S3. A custom interpolation that
preserves the unit length of q(t) must be used.

By leveraging on these properties, one can solve the interpolation by per-
forming:

qb p qb
∗ = qbq

−1
a qa p qa

∗q−1
a
∗qb
∗

= (qbq
−1
a)(qa p qa

∗)(qbq
−1
a)∗ (70a)

= q∆(qa p qa
∗)q∆

∗ (70b)

where q∆ = qbq
−1
a , unimodular quaternion because of (13e), represents the

rotation from qa to qb. Representing q∆ = (cos(θ∆),u∆ sin(θ∆)), one sees
that q∆ operates a rotation of an angle 2θ∆ about the fixed axis u∆. By
parametrizing such rotation as a function of the angle θ increasing with time t
one will get qδ(t) = (cos(θ∆t),u∆ sin(θ∆t)).

Recalling (68) (power of a quaternion q ∈ S3), one gets:

qδ(t) = (cos(θ∆t),u∆ sin(θ∆t))

= (cos(θ∆),u∆ sin(θ∆))
t

= q∆
t

=
(
qbq
−1
a

)
t

That is, recalling (70a), the ρ(qa,qb)(t) quaternion that interpolates qa and
qb assuming initial value ρ(qa,qb)(0) = qa and final value ρ(qa,qb)(1) = qb, is
given by the formula qδqa, that is:

ρ(qa,qb)(t) =
(
qbq
−1
a

)t
qa (72)

By the way:

ρ̇(qa,qb)(t) = (−θ∆ sin(θ∆t), θ∆u∆ cos(θ∆t))qa

|ρ̇(qa,qb)(t)| = |θ∆||1| = |θ∆| (73)

From a computational outlook, rather than getting ρ(qa,qb)(t) from (72), it
is better to perform the following steps: q∆ = qbqa

∗, then evaluate θ∆ =
cos−1(q∆0) and u∆ = {q∆1, q∆2, q∆3}T 1/ sin(θ∆), and finally compute qδ(t) =
(cos(θ∆t),u∆ sin(θ∆t)) and get ρ(qa,qb)(t) = (cos(θ∆t),u∆ sin(θ∆t))qa.

This (spherical, linear) interpolation is often called SLERP. As an alternative
formulation of SLERP, recalling (72) and using trigonometric properties:

ρ(qa,qb)(t) = qa
sin[θ∆(1− t)]

sin θ∆
+ qb

sin(θ∆t)

sin θ∆
(74)

In all cases there is a singularity for qa = ±qb.

18

ProjectCHRONO technical documentation

9.3 Other interpolation types

In Chrono::Engine we implemented the SLERP and other rotation interpolation
methods as subclasses of the chrono::ChFunctionRotation class. In detail,

• chrono::ChFunctionRotation ABCfunctions uses three functions for
three angles (Eulero angles, Cardano angles, etc., btw there are various
non equivalent angle sequences) so that ρ(t) = ρ(R(t)) where the rotation
matrix is a concatenation of three rotations R(t) = RC(t)RB(t)RA(t).

• chrono::ChFunctionRotation axis takes a fixed rotation axis v and a
function α = fα(t) to build the rotation ρ(t) = ρ(v, fα(t)).

• chrono::ChFunctionRotation setpoint computes the quaternion and
its derivatives from a continuously updated setpoint passed from an ex-
ternal sampled function.

• chrono::ChFunctionRotation spline computes the quaternion using
quaternion B-Splines, of order p, given N quaternion control points:
ρ(t) = ρ(ρ1,ρ2, ...,ρN , t) . The first and last rotation are matched ex-
actly, whereas the intermediate control points are passed nearby, just like
in usual B-splines. Note that the SLERP interpolation described in previ-
ous section is obtained exactly with this method, when using order p = 1
(linear spline).

• chrono::ChFunctionRotation SQUAD computes the quaternion using a
sequence of SQUAD interpolations, given N quaternion control points:
ρ(t) = ρ(ρ1,ρ2, ...,ρN , t) . All control point rotations are matched ex-
actly, because the class takes the sequence of control points, and for each
span it inserts two ghost rotations so that each span is like a single SQUAD
as in classic literature.

10. Conclusion

Quaternions are extensively used in Chrono::Engine to work with rotations.
Look into the documentation of the the chrono::ChQuaternion class for ad-
ditional information.

More information available in Chrono::Engine web site.

References

[1] J.M. Hervé. The mathematical group structure of the set of displacements.
Mechanism and Machine Theory, 29(1):73 – 81, 1994.

[2] J.M. Hervé. The lie group of rigid body displacements, a fundamental tool
for mechanism design. Mechanism and Machine Theory, 34(5):719 – 730,
1999.

19

http://api.chrono.projectchrono.org/classchrono_1_1_ch_function_rotation.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_function_rotation\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}_a_b_cfunctions.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_function_rotation\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}axis.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_function_rotation\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}setpoint.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_function_rotation\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}spline.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_function_rotation\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}_s_q_u_a_d.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_quaternion.html
http://www.projectchrono.org

ProjectCHRONO technical documentation

[3] B. Kolev. Lie groups and mechanics: An introduction. Journal of Nonlinear
Mathematical Physics, 11:480–498, 2004.

20

	Quaternions
	Elements of quaternion algebra
	Alternative notations
	Rotations
	Rotation axis
	Angular velocity
	Angular acceleration
	Lie groups, exponentials and relation with other representations
	Other properties
	Normalization of quaternions
	Interpolating quaternions
	Other interpolation types

	Conclusion

