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Abstract

This document contains some short notes on time integrators for constrained me-
chanical systems. Some of these integrators are implemented in Chrono::Engine since
release 3.0. There are two types of time integration: for non-smooth problems we use
the DVI formulation, for ODE and DAE we use explicit or implicit integrators such
as HHT or Euler implicit. Not all of the discussed time integrators are implemented
in the code, some are here for reference and to better explain the following sections.

1. Introduction

Chrono::Engine implements various types of time integrators. In literature, time
integrators are grouped in two classes, implicit and explicit [7]. The latter are
suited for stiff problems, but require more complex implementations.

In the field of classical smooth mechanics, one has Ordinary Differential
Equations (ODE) and Differential Algebraic Equations (DAE), the latter hap-
pens when constraint equations are expressed together with the differential equa-
tions, and it happens very frequently in multi-body dynamics.

In the generalization to set-valued force laws, as happens when friction be-
tween parts are considered, one has Differential Variational Inequalites (DVI);
if impulses and discontinuities must be considered, these become also Measure
Differential Inclusions (MDI) [15]. DVI provide a generalization to DAE and
ODE.

In Chrono::Engine there is a default timestepper, that is the
chrono::ChTimestepperEulerImplicitLinearized, an implicit integrator
that can handle DVI/MDI and DAE. Other timesteppers can handle DAE or
ODE only.

In the following we discuss how equations of motion are implemented in
Chrono::Engine , along with details on constraints, system state, etc. Then, we
succinctly present the theory behind the most relevant time integrators, with

1

http://api.chrono.projectchrono.org/classchrono_1_1_ch_timestepper_euler_implicit_linearized.html


ProjectCHRONO technical documentation

special emphasis on DVI and implicit integrators because they require some
complication (solution of linear systems, Newton Raphson iterations, etc.).

2. Mathematical background

In this section we introduce concepts and notations in convex analysis and
optimization that will be used in the rest of the article. More details can be
found in [13].

Measures

We recall some basic facts about measure theory. This will be useful for concepts
related to measure differential inclusions.

• A measure ν(E) is a function ν : E → R, where E is a set from a σ-algebra
Σ of a measurable space (X,Σ), satisfying the properties of zero measure of
empty sets ν(∅) = 0 and countable additivity µ (

⋃∞
k=1Ek) =

∑∞
k=1 µ(Ek).

• Unsigned measures are measures ν : E → R+.

• Vector measures are measures ν : E → Rn.

• A Lebesgue measure operates on sub-sets of n-dimensional Euclidean space
E ⊂ Rn, for instance the Lebesgue measure of intervals in R is the (un-
signed) measure λ0([a, b]) = b − a. Not all subsets of Rn are Lebesgue-
measurable.

• Borel measures are measures on generic topological spaces (E , τ). Given
a locally compact Hausdorff space E , a Borel measure µ is any measure
defined on the smallest σ-algebra that contains the open sets of E , i.e. the
σ-algebra of the Borel sets.

• Radon measures are locally-finite Borel measures, such that for every point
x of the measure space E , there is an open neighbourhood \x of x such
that the measure of \x is finite |µ(Np)| < +∞. It follows that |µ(C)| <
+∞∀C ⊂ E .

• Two measures on a measurable space (X,Σ) are mutually singular, with
symbol µ⊥ν, if there exist a set M∈ Σ such that

µ(M) = 0 and ν(X \M = 0) (1)

A measure ν is said absolutely continuous respect to a measure µ, with
symbol ν << µ, if

µ(A) = 0⇒ ν(A) = 0 ∀A ∈ Σ (2)
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• The Lebesgue decomposition theorem says that, given two σ-finite mea-
sures ν and µ on a measurable space (X,Σ), there exist a unique
(Lebesgue) decomposition

ν = νc + νs (3)

with νc << µ and νs⊥µ. Moreover, νc⊥νs.

• The Radon-Nikodym theorem states that, for σ-finite absolutely contin-
uous measure νc << µ on a measurable space (X,Σ) and with A ∈ X,
there exist a measurable function f : X ⇒ [0,∞) such that

νc(A) =

∫
A

fdµ (4)

Conventionally, f is denoted dνc
dµ and it is called the Radon-Nikodym

derivative.

Convex algebra, cones

• A set K ∈ Rn is a n-dimensional cone if, for all x ∈ K, we have that
βx ∈ K for all β ∈ R+.

• As for other sets, cones can be optionally convex, closed, or compact. If
int(K) 6= {∅} the cone is said full. If it is closed, convex and full it is said
proper.

• A cone is said to be pointed or salient if it satisfies K ∩−K = {∅}.

• A second order cone (Lorentz cone) is a self-dual, self-scaled symmetric
cone defined as

K =
{

(x0,x1) ∈ R× Rp−1 : ||x1||2 ≤ x0

}
(5)

• A set K in a generic real vector space equipped with an inner product has
a dual cone K∗ that is always convex regardless of the fact that K is a
cone too, or convex too. It is expressed as

K∗ = {y ∈ Rn : 〈y,x〉 ≥ 0 ∀x ∈ K} . (6)

• The polar cone, strictly related to the dual cone of a set, is defined as

K◦ = {y ∈ Rn : 〈y,x〉 ≤ 0 ∀x ∈ K} = −K∗. (7)

• The normal cone to a closed convex set K at the point x ∈ K is closed
and convex and is defined as

NK(x) = {y ∈ Rn : 〈y,x− z〉 ≥ 0,∀z ∈ K} (8)
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• The tangent cone to a closed convex set K at the point x ∈ K is closed
and convex and is defined as

TK(x) = cl{β(y − x) : y ∈ K, β ∈ R+} = NK(x)◦ (9)

• Note that if x is an interior point of K, it is always NK(x) = {∅}.

• The recession cone or horizon cone of K is defined as

K∞ = {y ∈ Rn : ∀x ∈ K,∀λ ≥ 0,x+ λy ∈ K} , (10)

and it can be verified that K∞ = {∅} if K is bounded.

• The indicator function of a subset A ∈ E is a scalar function I : E 7→ R
defined as:

IA(x) =

{
∞ if x ∈ A
0 if x /∈ A (11)

• The subgradient at x0 of a convex, possibly non differentiable scalar func-
tion f : E 7→ R is a vector g such that

f(x) ≥ f(x0) + 〈g, (x− x0)〉 ∀x ∈ E (12)

• The subdifferential ∂f(x0) at x0 of a convex, possibly non differentiable
scalar function f : E 7→ R, is the closed convex set of all subgradients at
x0:

∂f(x0) = {g : f(x) ≥ f(x0) + 〈g, (x− x0)〉 ∀x ∈ E} . (13)

The subdifferential is a set valued function in general, but as a special case,
if f(x) is differentiable, ∂f(x) = {∇f(x)}. An interesting property is that
the subdifferential of an indicator function of a convex set corresponds also
to the normal cone:

∂IK(x) = NK(x). (14)

• The symbols of generalized inequality � and � are used, with a proper
cone K, to express

x �K y ⇐⇒ x− y ∈ K (15)

x �K y ⇐⇒ x− y ∈ int(K) (16)

Variational inequalities

Variational Inequalities (VI) are a useful tool that generalizes many mathemat-
ical problems. Non-smooth dynamics leverage on such formulation: in a DVI
integrator, each time step requires the solution of at least one VI.

• A Variational Inequality VI(F ,K) is a problem of the type

x ∈ K : 〈F (x),y − x〉 ≥ 0 ∀y ∈ K, (17)

with K closed and convex and continuous F (x) : K → Rn. We call
SOL(K, F ) the solution of problem (17).
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• An alternative expression for VI is the following:

x ∈ K : F (x) ∈ NK(x) (18)

To derive the equivalence with Eq.(18) note that NK(x) = {0} when x is
inside K and not on its boundary, i.e. when x ∈ (K \ ∂K).

Existence and uniqueness of the solution of a VI can be immediately proved
in some special cases:

• Existence of a solution u in 17 holds if K is compact (and convex).

• Existence of a solution u in 17 holds if F (·) is cohercive, that is if:

〈F (x)− F (x0),x− x0〉
|x− x0|

→ ∞ as |x| → ∞ (19)

• Uniqueness of a solution u in 17 holds if F (·) is monotone, that is if:

〈F (x)− F (x0),x− x0〉 > 0 ∀x,x0 ∈ K (20)

Some problems in mathematical programming and optimization can be ex-
pressed using VIs, as they are, in fact, special cases of VIs:

• A Nonlinear Complementarity Problem (NCP) is the problem of finding
a x that satisfies

F (x) ≥ 0, x ≥ 0, 〈F (x),x〉 = 0, (21)

also written in a the more compact notation:

F (x) ≥ 0 ⊥ x ≥ 0, (22)

the NCP is equivalent to a VI where K = Rn+:

x ∈ Rn+ : 〈F (x),y − x〉 ≥ 0 ∀y ∈ Rn+ (23)

• A Linear Complementarity Problem (LCP) is the problem of finding a x
that satisfies

Ax− b ≥ 0, x ≥ 0, 〈Ax− b,x〉 = 0, (24)

also written in the more compact notation:

Ax− b ≥ 0 ⊥ x ≥ 0, (25)

the LCP is equivalent to a VI where K = Rn+ and with affine F :

x ∈ Rn+ : 〈Ax− b,y − x〉 ≥ 0 ∀y ∈ Rn+ (26)
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• A Cone Complementarity Problem (CCP) is the problem of finding a x
that satisfies

Ax− b ∈ −Υo, x ∈ Υ, 〈Ax− b,x〉 = 0, (27)

also written in the more compact notation:

Ax− b ∈ −Υo ⊥ x ∈ Υ, (28)

where Υ is a (convex) cone, and if it is a second-order Lorentz cone, one
has a CCP. The CCP is equivalent to a VI where K = Υ and with affine
F :

x ∈ Υ : 〈Ax− b,y − x〉 ≥ 0 ∀y ∈ Υ (29)

• A convex optimization, is the problem of finding x in

x =argminf(x)

s.t. x ∈ K
(30)

(31)

where one assumes a convex K and a continuous (differentiable) scalar
function f(x) : Rn → R. The geometric necessary optimality condition
for local optimality at x is

∇f(x) ∈ −T ◦K(x) (32)

Note: recalling T ◦K(x) = NK(x) and 18, this convex programming is equiv-
alent to a VI(F ,K) with F (x) = ∇f(x), which is in fact the 1st order
optimality condition of the optimization problem:

x ∈ K : 〈∇f(x),y − x〉 ≥ 0 ∀y ∈ K (33)

Note that if f(x) is convex, F (x) is monotone.

• A Quadratic Programming (QP) is a sub-case of convex optimization 31
with a quadratic f(x), often written as the problem of finding x in

x =argmin
1

2
xTMx+ bTx

s.t. Ax+ c ≥ 0

(34)

(35)

This QP is equivalent to the following VI with F (x) = Nλ+ r:

λ ∈ Rnλ+ : 〈Nλ+ r,λ− y〉 ≥ 0 ∀y ∈ Rnλ+ (36a)

N = AMAT (36b)

r = −AM−1b+ c (36c)

x = M−1(ATλ− b) (36d)

and thus, also equivalent to a LCP:

Nλ+ r ≥ 0 ⊥ λ ≥ 0, (37)
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Differential problems

In the following we present some definitions about ODEs, DAEs, DIs,
DVIs, etc. Differential inclusions an be interpreted as a generalization of
ODEs to the case of discontinuous right hand side.

– An Ordinary Differential Equation (ODE) is a system

dx

dt
= f(x, t) (38)

with prescribed initial value x(t0) = x0. Cauchy-Lipschitz and
Picard-Lindelhof theorems provide existence and uniqueness of so-
lution x(0) under the assumption of f(x, t) uniformly Lipschitz con-
tinuous in x and continuous in t.

– A Differential Algebraic Equation (DAE) is a general system of dif-
ferential equations. In the implicit form it reads:

F

(
dx

dt
,x, t

)
(39)

Often a DAE is expressed in the semi-implicit form, that reads as an
ODE plus additional algebraic constraints g:

dx

dt
= f(x, t) (40a)

g(x, t) = 0 (40b)

Of course both cases come along with prescribed initial values x(t0) =
x0.

– A Filippov Differential Inclusion (DI) can be interpreted as an ODE
for problems with discontinuous f(x, t):

dx

dt
∈ Ff(x, t) Ff(x, t) =

⋂
η>0

⋂
N :λ0(N)=0

c̄of(x+ηB1 \N, t) (41)

where λ0(E) is a Lebesgue measure on E, B1 is a origin-centered unit
ball, and f is discontinuous in x.

– More in general, a Differential Inclusion (DI) is a problem

dx

dt
∈ F(x, t) (42)

where the set-valued function F(x, t) is closed, bounded and con-
vex and is upper semi-continuous, or equivalently, F(x, t) has closed
graph.
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– We introduce Differential Variational Inequality (DVI) problems as:

dx

dt
= f(x,u, t) (43a)

u ∈ SOL(F ,K) (43b)

where SOL(F ,K) is the (set of) solution to the VI(F ,K). This is a
special type of DI, too. One can see that a DVI includes DAE as
a special case: with n bilateral algebraic constraints one takes F as
the vector of algebraic constraint residuals, and uses K = Rn so that
F = 0 everywhere by definition VI.

– A Measure Differential Inclusion (MDI) is a generalization of DI
(DVI) that also accomodates impulsive events. For second order
problems as in mechanics, with v(t) = dq/dt it reads:

dv

dt
∈ K(q, t) (44)

where v is a function of bounded variation and K(q, t) is a set-valued
function with closed graph and closed convex values. The strong
definition of solution (Moreau) follows the singular measure decom-
position of dv = ν into νs + hλ0, with respect to the singular part
νs and Lebesgue measure λ0 for continuous h(t) ∈ L1(a, b): then
the strong definition of solution is: h(t) ∈ K(t) almost all t, and
dνs/|νs|(t) ∈ K(t)∞, i.e. the Radon-Nikodym derivative fits the
horizon cone. The weak definition of solution (Stewart) is:∫

φ(t)dν(dt)∫
φ(t)dt

∈ c̄o
⋃

τ :φ(τ) 6=0

K(τ) (45)

for any continuous φ(t) : R→ R+ with compact support.

3. System state

The configuration of the system at time t is represented by mq generalized
coordinates q(t) ∈ Rmq . The velocity is represented by the vector v(t) ∈
Rmv .

Special attention must be paid to the fact that one could have mq 6= mv.
For instance, when storing the state of rigid bodies, we use quaternions
for rotations, and angular velocities for velocities.

For the configuration of each i-th body in the system, we introduce the
position xi ∈ R3 of its center of mass, and we introduce its rotation matrix
Ai ∈ SO3, both expressed relatively to the absolute reference.
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As a A matrix requires to store 3x3=9 scalars, we prefer to parametrize
3D rotations in SO3 using its double cover S3, the hypersphere of unit-
length quaternions, ie. H1. The quaternion that expresses the rotation of
the i-th body is then ρi ∈ H1, a set of four scalars.

We recall that one can convert between both matrix or quaternion repre-
sentations of rotation when needed: A = A(ρ) and ρ = ρ(A), as shown in
chrono::ChQuaternion and chrono::ChMatrix33.

The velocity of the i-th body is expressed with a vector ẋi ∈ R3, and
it considered in the absolute reference. The angular velocity of the i-th
body is a vector ωl,i ∈ R3 and, differently from xi, ρi, ẋi, is expressed in
body-local coordinates; this is a consequence of some optimizations aimed
at speeding up parts of the code.

This means that the configuration and velocity parts of the state are stored
as:

q = {xT1 ,ρT1 ,xT2 ,ρT2 , ...}T (46)

v = {ẋT1 ,ωT1,l, ẋT2 ,ωT2,l, ...}T (47)

It might happen that the system contains also of objects that are not
rigid bodies, like in the case of FEA nodes used for tetrahedrons, where
the position is a 3D vector and the velocity is a 3D vector, without the
need of rotations. If so, these states are appended anyway in the same q
and v global vectors.

Incremental update of state

In many time stepping schemes and integration algorithms one has steps
where the configuration of the state must be updated with expressions
like: q(l+1) = q(l) + ∆tv, usually with h = ∆t being a time step. This
is straightforward when mq = mv, as if using just nodes with pure XYZ
translations. However this sum is impossible if mq 6= mv, as in our case
where we introduce quaternions in q and angular velocities in v.

This calls for a general method for performing the incremental update from
q(l) to q(l+1) using a vector hv. This is possible by using the exponential
of Lie algebras.

In general, the configuration q can be seen as an element of a Lie group
G, then velocities v are the corresponding Lie algebra g, where g = TIG,
the tangent at the smooth manifold G at the identity, and where v(t) =
p−1(t)ṗ(t) for v ∈ g, q ∈ G 1.

The exponential map is a function that transforms an element of the Lie
algebra into an element of the Lie group as exp : g 7→ G. This is useful
when dealing with (local) trajectories on G, as it holds p(t) = exp(tv).

1In this view, momenta are elements of Lie co-algebra g∗
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So the incremental update of a configuration becomes a product between
two Lie group elements, an increment exp(hv) and a starting point q(l):

q(l+1) = q(l) + hv ⇒ q(l+1) = exp(hv)q(l)

For the case of x ∈ R3, since the Lie algebra of Rn is still Rn and the
product in the group is the usual sum of vectors in euclidean space, one
sees that the increment is still a sum of two vectors as:

x(l+1) = x(l) + hẋ (48)

For the case of ρ ∈ H1, the Lie algebra of unit quaternions is Im(H),
and one computes the exponential map as exp({0, 1

2ωh}). In fact, we can
explicitly compute the quaternion exponential thanks to the property:

exp(ρ) = exp({a, b}) = ea
{

cos |b|, b
|b|

sin |b|
}

This gives:

exp

({
0,

1

2
ωh

})
= exp

({
0, (ω/|ω|)1

2
|ω|h

})
=

{
cos

1

2
|ω|h, ω

|ω|
sin

1

2
|ω|h

}
(49)

Note that ω is the angular velocity in absolute frame, but in Chrono we use
the angular velocity ωl expressed in body local frame, where ω = ρωlρ.

Therefore rotation incremental updates can be expressed in one of the
equivalent forms:

ρ(l+1) = exp

({
0,

1

2
ω(l)h

})
ρ(l) (50)

=

{
cos

1

2
|ω(l)|h, ω

(l)

|ω(l)|
sin

1

2
|ω(l)|h

}
ρ(l) (51)

= ρ(l)

{
cos

1

2
|ω(l)
l |h,

ω
(l)
l

|ω(l)
l |

sin
1

2
|ω(l)
l |h

}
(52)

Since {cos 1
2 |ωl|h,

ωl
|ωl| sin

1
2 |ωl|h} is a unit-length quaternion ρ∆l

, one sees

that this incremental update is just a product between two unit-length
quaternions: ρ(l+1) = ρ(l)ρ∆l

.

Finally, the incremental update of the state configuration becomes:
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q(l+1) = exp(hv(l))q(l) (53)

=



x
(l)
1 + hẋ

(l)
1

ρ
(l)
1 exp({0, 1

2ω
(l)
1,lh})

x
(l)
2 + hẋ

(l)
2

ρ
(l)
2 exp({0, 1

2ω
(l)
2,lh})

...


. (54)

This q(l+1) = exp(hv(l))q(l) mapping is performed automatically in
Chrono all times that one performs a = b + c in C++ expressions,
when a and b are Lie groups (i.e. vectors from the chrono::ChState

class) and c is the corresponding Lie algebra (i.e. a vector from the
chrono::ChStateDelta class), because it is computed as a = exp(c)b
thanks to the operator-overloading of the ”+” operator in C++ language.

In other words, one writes q(l+1) = q(l) + hv(l) in the C++ code, and the
formula q(l+1) = exp(hv(l))q(l) is evaluated instead.

As a side note: some integrators (ex. Runge-Kutta) might require updates

with N terms such as q(l+1) = q(l) +h(v
(l)
A +v

(l)
B ). If so, there are different

options to express this via exponential maps. One possibility is doing N

successive products in the Lie group, as q(l+1) = exp(hv
(l)
A )exp(hv

(l)
B )q(l)

or q(l+1) = exp(hv
(l)
B )exp(hv

(l)
A )q(l). This is the approach of Crouch and

Grossmann [6], but note that the order matters, as our Lie group is not

Abelian. Another option is to do q(l+1) = exp(h(v
(l)
A + v

(l)
B ))q(l), and this

is what happens in Chrono, when needed. A more rigorous approach, as
found in the Munthe-Kaas theory on Lie integrators [9], requires formulas

like the latter, but adding correction terms of the type [v
(l)
A ,v

(l)
B ]; those

terms must be computed using Lie brackets [·, ·].

4. Constraints

Kinematic pairs such as revolute or prismatic joints are bilateral con-
straints, expressed using (possibly nonlinear) algebraic constraints be-
tween coordinate systems attached to two moving parts.

We introduce a set GB of algebraic constraints as:

Ci(q, t) = 0 ∀i ∈ GB (55)

Assuming the smoothness of Ci(q, t), one can compute the jacobian
∇qCi = [∂Ci/∂q]T .

We introduce the time derivative of the constraint equations, as these will
be used in the following:
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dCi(q, t)

dt
=
∂Ci
∂q

q̇ +
∂Ci
∂t

(56)

= ∇qCTi q̇ +
∂Ci
∂t

(57)

= ∇qCTi Γ(q)v +
∂Ci
∂t

= 0 (58)

From now on we will abbreviate ∇CTi = ∇qCTi Γ(q). Here we introduced
a linear mapping Γ(q) that would be a diagonal except for the 4x3 blocks
that are used to transform angular velocities into quaternion derivatives
according to the quaternion product ρ̇ = 1

2ρ{0,ω
l}.

For each constraint one has a lagrangian multiplier γ̂B,i such that the
reaction force in generalized coordinates is γ̂B,i∇CTi .

5. Contacts

Under the assumption of perfectly rigid bodies, unilateral contacts lead to
complementarity constraints.

We introduce a set of GA contact constraints between pairs of body shapes.

For each contact constraint we assume that there is a signed distance
function

Φi(q) ≥ 0 (59)

between a pair of body features that are in proximity, as shown in Fig.1,
and we assume that it is differentiable in q.

Some remarks here.

– Each Φi(q) corresponds to a couple of nearest contact points, that
should be coincident Φi(q) = 0 when the contact is active, or sepa-
rated Φi(q) > 0 when the contact is inactive as for approaching or
departing motion of two near surfaces.

– The differentiability of Φi(q) does not hold in general, ex. when
considering sharp edges in G0 surfaces. Nevertheless, assuming the
couple of nearest contact points to be fixed to the surfaces for small
motions, this is not an issue.

– The condition Φi(q) < 0 should never happen, as Eq.59 enforces the
opposite, but for many reasons including numerical inaccuracies or
wrong initial conditions, this interpenetration case still might hap-
pen; our solver is able to cope also with this situation, as algorithmic
robustness is imperative in this type of simulations.
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Figure 1: The signed distance function for a couple of collision shapes.

– The set GA varies continuously during the simulation, as the contact
point pairs are added/removed/updated at each time step by the
collision detection engine.

– Even a single pair of rigid bodies could lead to multiple contacts. In
the case of two smooth convex shapes, most notably the case of sphere
vs sphere, it is easy to compute a single distance function Φi(q), but
difficulties arise when one or both of the two shapes is concave. Also
faceted convex shapes (convex hulls, boxes, etc.) can pose difficulties
with degenerate cases: i.e. when two faces are coplanar or an edge is
coplanar to a face. In sake of performance all these situations are cast
as a set of multiple contact points between the two shapes, although
this process is demanded to the heuristics of the collision detection
algorithm. Our algorithm tends to create the smallest amount of
required contact pairs (ex. see Fig.2).

– A contact constraint should be added to the GA set before the surfaces
start to interpenetrate and the contact is likely to happen within one
time step. However, adding it when the two bodies are still too far
apart will create too many unneeded contact constraints, resulting in
computational burden. In our code we add a contact pair to the GA
manifold only when Φi(q) < εe, where εe is an user defined tolerance,
as shown in Fig.3.

– Because of errors in time integration, an exact Φ = 0 for active
contacts is impossible: the real effect is that numerical inaccuracy
would create small oscillations around the zero value. However, the
GJK collision algorithm cannot work with interpenetrating shapes.
So we implemented a trick that makes the GJK algorithm robust

13
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Figure 2: Multiple contact points between coplanar facets.

even in case of small penetrations. This is achieved by considering
the original shapes as sphere-swept surfaces, i.e. Minkowski sums of
two smaller shapes and two spheres with diameter εm, as in Fig.3.
Then, the GJK algorithm is applied to the shrunk shapes. After GJK
finds the closest contact points, P ′A and P ′B , these are offset along the
normal by εm, to obtain PA and PB , that are inserted into the GA
set. The result is that penetrations up to 2εm between PA and PB
can be accepted (see Fig.4), while P ′A and P ′B are still separate with
positive distance.

For a perfectly rigid, but frictionless contact, the Signorini condition lead
to a complementarity constraint:

Φi(q) ≥ 0 ⊥ γ̂n,i ≥ 0 (60)

that expresses that the requirement that γ̂n,i is positive if distance is null
(active contact), and viceversa distance is positive only if γ̂n,i is null if

For each contact point one can compute a local coordinate system with
one normal tn,i ∈ R3 and two tangents tu,i, tv,i ∈ R3 axes, mutually
orthogonal. The normal force value is expressed by a multiplier γ̂n,i.

Similarly, we introduce the force multipliers γ̂u,i, γ̂v,i for the tangential
forces caused by friction. The contact force in 3D space, in its normal
Fn,i and tangential component F‖,i, is thus

Fi = Fn,i + F‖,i (61)

= Fn,i + Fu,i + Fv,i (62)

= γ̂n,itn,i + γ̂u,itu,i + γ̂v,itv,i (63)

We introduce also the conjugate quantities, that is, the velocities at
the contact point, both in normal vn,i and tangential component v‖,i.

14
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Figure 3: Collision shapes and tolerances. 
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Figure 4: Robust handling of small penetrations using sphere-swept surfaces.

These are related to generalized velocities v ∈ Rnv via the jacobians
Dn,i,Du,i,Dv,i:

vi = vn,i + v‖,i (64)

= vn,i + vu,i + vv,i (65)

= un,itn,i + uu,itu,i + uv,itv,i (66)

= (DT
n,iv)tn,i + (DT

u,iv)tu,i + (DT
v,iv)tv,i (67)

The Coulomb-Amontons contact model introduces the friction coeffi-
cient µi and states that µγ̂n,i ≥

√
γ̂2
u,i + γ̂2

v,i for γ̂n,i ∈ R+, and that

the tangential velocity at contact
∣∣∣∣v‖∣∣∣∣ are in opposite direction, i.e.〈

F‖,v‖
〉

= −
∣∣∣∣F‖∣∣∣∣ ∣∣∣∣v‖∣∣∣∣.

Adding the Signorini condition 60, such frictional contact model is math-
ematically equivalent to an optimization constraint, and is expressed by
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the following maximum dissipation principle [19, 16, 17]:

Φi(q) ≥ 0 ⊥ γ̂n,i ≥ 0 (68)

(γ̂u, γ̂v) = argmin√
γ̂2
u+γ̂2

v≤µγ̂n
(γ̂ut1 + γ̂vt2)

T
v‖. (69)

We remark that the contact model of Eq.69 depends only on a constant
parameter µi. Differently to the original Coulomb-Amontons model, we
do not make distinction between static and dynamic fiction coefficient;
nevertheless with some changes the formulation could also support this
distinction and even more sophisticated cases such as the Stribeck effect,
where µi = µi(v‖,i). However in the following we will assume constant
friction coefficients. In our tests, neglecting the Stribeck effect had no
significant impact on precision.

For active contacts, i.e. those with Φ = 0, one can write the Signorini
condition at the velocity level, which is Φ̇i(q) ≥ 0 ⊥ γ̂n,i ≥ 0, recalling

that Φ̇i(q) = un,i = Dn,iv. For active contacts, the maximum dissipation
principle of Eq.69 can be developed into a cone complementarity using the
De Saxcé-Feng bipotential [14]. To this end one introduces second order
Lorentz cones

ΥA,i =
{
γ̂n, γ̂u, γ̂v | µγ̂n ≥

√
γ̂2
u + γ̂2

v

}
⊂ R3

and their dual cones Υ∗A,i, so that Eq.69 can be written as a cone comple-
mentarity:

γ̂i ∈ ΥA,i ⊥ ūi ∈ Υ∗A,i, ∀i ∈ {GA|Φi = 0} (70)

where we introduced

γ̂i =

 γ̂u,i
γ̂v,i
γ̂n,i

 (71)

and

ūi =


un,i + µi

√
u2
u,i + u2

v,i

uu,i
uv,i

 (72)

=

 un,i + µi
∣∣∣∣v‖,i∣∣∣∣

uu,i
uv,i

 (73)

= DT
i v +


µi

∣∣∣∣∣∣DT
‖,iv

∣∣∣∣∣∣
0
0

 (74)

= ui + ũi (75)
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Here we used the matrices DA,i ∈ Rmv×3 and D‖,i ∈ Rmv×2, as:

DA,i = [Dn,i|Du,i|Dv,i] =
[
Dn,i|D‖,i

]
(76)

 

PA PB tu 

tv 

tn 

γ 

tan-1(μ) ϒ 

Figure 5: The Coulomb friction cone for a single contact.

We remark that ū is a non-linear non-differentiable function of v because
of the ũ term

ũ =

 µi
∣∣∣∣v‖,i∣∣∣∣

0
0


Also, the constraint of Eq.70 expresses a non-associated dissipative rule;
it would be associated without the ũ term.

In order to accommodate discontinuous events, as those caused by impacts,
one must introduce vector signed Radon measures dγi that contain im-
pulses. These measures can be Lebesgue-decomposed as dγi = γ̂i(t)dt+ξi,
including continuous forces γ̂i(t) ∈ L1 over Lebesgue dt and impulses ex-
pressed by atomic measures ξi that generate instantaneous changes in
velocity.

17



ProjectCHRONO technical documentation

6. The dynamical model

We introduce generalized forces f(q,v, t) ∈ Rmv , including gravitational
forces, external applied forces, gyroscopic forces, etc.

The block-diagonal mass matrix M ∈ Rmq×mq contains all the masses and
inertia tensors of the rigid bodies.

Let assume, for a moment, that there are no discontinuities in velocities:
the multibody model is expressed, at the acceleration level, by the follow-
ing DVI:

M
dv

dt
= f(q,v, t) +

∑
i∈GA

DA,iγ̂A,i(t) +
∑
i∈GB

∇Ciγ̂B,i(t)

γ̂A,i ∈ ΥA,i ⊥ ūi ∈ Υ∗A,i ∀i ∈ {GA|Φi = 0}
γ̂A,i = 0 ∀i ∈ {GA|Φi > 0}
Ci(q, t) = 0 ∀i ∈ GB
q̇ = Γ(q)v

(77a)

(77b)

(77c)

(77d)

(77e)

We can rewrite the model with a more compact notation, that shows more
directly how this is a DVI.

For instance, bilateral constraints can be reformulated at the velocity level,
just by differentiating them 2, so Eq.77d becomes:

dCi(q, t)

dt
= 0 ∀i ∈ GB.

The bilateral constraint equation above can be reformulated as a CCP as
well. In fact bilateral constraints, formulated at the velocity level, can
be expressed via an inclusion too, by writing dCi(q, t)/dt ∈ ZB,i where
we take the degenerate cone ZB,i = {0}. It holds that Z∗B,i = Z◦B,i = R,
where for bilateral reactions it is obviously γ̂B,i ∈ R.

2As for DAE systems of index 2, replacing the constraint equations by their derivatives
might have a consequence later, when finding approximation to the problem via integration
schemes. In fact, whatever time integrator will introduce some numerical errors, and small er-
rors at the position level might accumulate from time to time if only the speed-level constraints
are enforced: constraints will slowly drift apart, although perfectly satisfied at the speed level.
So, when going to the numerical implementation, this calls for stabilization schemes or other
strategies that do not loose the information of the original position-level constraint.
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So we can collect all constraints:

ūB = [dC1(q, t)/dt , ... , dCnB(q, t)/dt]T = 0 (78)

γ̂B = [γ̂B,1 , ... , γ̂B,nB ]T (79)

DB = [∇C1(q, t) | ... |∇CnB(q, t)] (80)

ΥB =×
i∈GB
Z∗B,i (81)

Υ∗B =×
i∈GB
ZB,i (82)

and write the bilateral constraints at velocity level as a single CCP:

γ̂B ∈ ΥB ⊥ ūB ∈ Υ∗B. (83)

Also frictional contacts at Eq.77b-77c can be grouped in a single CCP.

A possibility 3 is to consider only active contacts and corresponding mul-
tipliers γ̂A∗,i in summations and in CCP constraints, ie. introducing

GA∗ = {i ∈ GA∗|Φi = 0}

then modify the sum in Eq.77a as
∑
i∈GA∗ DA∗,iγ̂A∗,i(t) and rewrite

Eq.77b-77c as a single CCP:

γ̂A∗,i ∈ ΥA∗,i ⊥ ūi ∈ Υ∗A∗,i ∀i ∈ GA∗ (86)

In the rest of this chapter, in sake of a more compact notation, we will
omit the ∗ asterisk and we will use ΥA,i for ΥA∗,i and γ̂A,i for γ̂A∗,i, as
there is no risk of misunderstandings.

By collecting all frictional contacts in

ūA = [ūTA,1 | ... |ūTA,nA ]T = 0 (87)

γ̂A = [γ̂TA,1 | ... | γ̂TA,nA ]T (88)

DA = [DA,1 | ... | DA,nA ] (89)

ΥA =×
i∈GA

ΥA,i (90)

Υ∗A =×
i∈GA

Υ∗A,i (91)

3 Alternatively, note that Eq.77b-77c can be written as a single VI. It is enough to make
ΥA,i as a set that depends on Φi, being a Coulomb friction cone if Φi ≤ 0 and being a set 0
if Φi > 0, that is, a set that depends on current system configuration q:

ΥA,i(q) =

{
ΥA,i if Φi(q) ≤ 0
{0} if Φi(q) > 0

(84)

This done, one can rewrite the CCP of Eq.77b and Eq.77c as this single VI:

γA ∈ ΥA : ūi ∈ NΥA(q)(γA) (85)
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we can write the frictional constraints as a single CCP:

γ̂A ∈ ΥA ⊥ ūA ∈ Υ∗A. (92)

We can unify unilateral and bilateral constraints, obtaining:

DE = [DT
A | DT

B ]T (93)

γ̂E = [γ̂TA | γ̂TB ]T (94)

ūE = [ūTA |ūTB ]T (95)

ΥE = ΥA ×ΥB (96)

Υ∗E = Υ∗A ×Υ∗B (97)

so we can write the model Eq.77 as a very compact DVI:

M
dv

dt
= f(q,v, t) +DE γ̂E

γ̂E ∈ ΥE ⊥ ūE ∈ Υ∗E

q̇ = Γ(q)v

(98a)

(98b)

(98c)

Observe how the CCP of Eq.98b is a VI(F ,ΥE) as in Eq.17 with nonlinear
F = ūE(γE).

A remark. Removing unilateral contacts leads to a DAE (Eq.40) as a
special sub-case. Without contact, the problem is smooth and one can
write the problem at the acceleration level, that is the following semi-
implicit DAE:

M
dv

dt
= f(q,v, t) +DBγ̂B(t) (99a)

C(q, t) = 0 (99b)

Such simpler sub-case is often met in smooth multibody dynamics and can
be solved via conventional DAE integrators. In detail, in Chrono::Engine
those DAE problems can be solved with the HHT or Newmark or similar
timesteppers; those are described later in the rest of this paper.

We need a numerical scheme for solving the DVI 77 or 98 at discrete time
steps in the most general case, when also frictional contacts are added.
We could be tempted to solve for unknown acceleration dv

dt and unknown
reaction forces γ̂i, and we could think of integrating such accelerations to
obtain velocities, and then also positions. In some cases this might also
work, but in others (ex. in Painleve paradoxes [11]) this is not possible,
because in the most general case we need a method that allows discontinu-
ities in velocities. Such result is possible by bringing the DVI into the MDI
framework, that is a formulation which makes the weaker assumption that
velocities are just functions of bounded variations [20]. In a MDI context,
also reaction forces might be discontinuous. In the following section we
briefly describe the consequences of dealing with DVI/MDI.
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7. Non-smooth dynamics

In a classical ODE or DAE, one assumes smooth accelerations, velocities,
positions. However the introduction of hard contacts lead to non-smooth
trajectories, and this require a new framework that encompasses jumps in
velocities. This can be achieved by using a formulation for non-smooth
dynamics.

In such a context, impact events and other impulsive phenomena mean
that the acceleration is not a function in a classical sense, because it
contains a certain number of spikes which can be considered using the
theory of (vector signed) measures.

In this regard, positions, velocities and accelerations in the non-smooth
formulation belong to these functional spaces:

– Accelerations are introduced using distributions of signed Radon
measures, as discontinuities in velocities prevent them to be the an-
tiderivatives of accelerations in the classical sense. Accelerations are
weak derivatives of velocities in distributional sense:

〈ν(dt),φ〉 = −
〈
v, φ̇

〉
=

∫ +∞

−∞
φ(t)dv(t) ∀φ ∈ C∞C (R) (100)

and the differential dv(t) = ν(dt), is interpreted as a signed mea-
sure inducing Riemann Stieltjes integrals for any continuous φ(t) as:∫
φ(t)dv(t) =

∫
φ(t)ν(dt).

– Velocities v(t) are functions of Bounded Variation (BV), with finite∨tb
ta
v(t) for [ta, tb] ⊂ [0, T ]

v(tb)− v(ta) =

∫
[ta,tb]

ν(dt) =

∫ tb

ta

dv(t) (101)

v(t) = v(t0) +

∫
[t0,t]

ν(dt) ∈ BV(R) (102)

Note that velocities need not to be absolutely continuous, or even
continuous.

– Positions (i.e generalized coordinates in configuration space) q(t) are
Absolutely Continuous (AC) functions:

q(t) = q(t0) +

∫ t

t0

v(t)dt ∈ AC(R) (103)

Using distributions for accelerations allows impulsive events. The
Lebesgue decomposition theorem states that for each pair of signed mea-
sures ν and µ there exist two signed measures such that ν = νc+νs, where

21



ProjectCHRONO technical documentation

νc is absolutely continuous respect to µ, and νs,µ are singular (see Eq.3)
In our case µ will be the time measure dt.

A further refinement of the measure decomposition leads to

ν = νc + νd + νsc

where νc is the absolutely continuous part, νd is the pure point (discrete)
part, νsc is the singular continuous part (as in Cantor function)

More in detail, neglecting the νsc singular continuous part that has no use
in this class of problems, in our case one gets the following decompositions
of the Radon vector signed measures that we will use to express:

– the speed differential:

dv = adt+ j (104)

where the measure dv = ν is split into an absolutely continuous
part adt respect to Lebesgue measure dt (here a(t) is a continuous
acceleration caused by smooth forces such as springs, gravity, etc.,
and it can be considered the Radon-Nikodym derivative of speed
almost-all t), and into a pure point part j with null support that is
responsible of instantaneous discontinuities in velocities. For exam-
ple, given an impulsive event causing a discontinuity at tI , one has
j = (v(t+I )−v(t−I )) if v(t+I ) and v(t−I ) are the left and right limits to
tI . More in general, given a countable set of pure points P ⊂ [t, t+h],
one has j =

∑
ti∈P ji =

∑
ti∈P(v(t+i )− v(t−i )).

– the ’impulse’:

dγ = γ̂dt+ ξ (105)

where the measure dγ is split into an absolutely continuous part γ̂dt
respect to Lebesgue measure dt (here γ̂(t) is a continuous reaction
caused by smooth forces such as gravity), and into a discrete part ξ,
caused by impacts, percussions, etc., which has the dimension of a
mechanical impulse.

The reformulation of DVI of Eq.98 in terms of measures leads to the
following MDI:

Mdv = f(q,v, t)dt+DEdγE

dγE ∈ ΥE ⊥ ūE ∈ Υ∗E

q̇ = Γ(q)v

(106a)

(106b)

(106c)

Some remarks:

– Eq.106b is different from the original Eq.98b, because it involves dγ
instead of γ̂E ; however one can see that, for cones, ΥE = aΥE for all
a > 0, and ΥE = Υ∞E . See the strong definition of MDI in Eq.44.
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– For smooth problems, when discrete measures j and ξ disappear
respectively from Eq.104 and Eq.105, the MDI 106 becomes again
the DVI of Eq.98 by just moving the dt to the denominator.

Numerical methods for MDIs aim at approximating q(t) and v(t) with
discrete values qn(t) and vn(t) where qn(t)→ q(t) uniformly and vn(t)→
v(t) pointwise (i.e. with weak* convergence of the differential measures

dvn
∗
⇀ dv).

The weak* convergence of MDI and the h ↓ 0 convergence of time stepping
schemes based on MDI are discussed in [18].

From a practical perspective, MDI formulations lead to time stepping
schemes where, at each time step, the unknowns are:

– velocity changes (v(t+h) − v(t)) over a time step h

– reaction impulses γ =
∫

[t,t+h)
dγ over a time step h

In the next section we present a time stepping method that can perform
the time integration of MDI-DVI Eq.106

8. The DVI time stepping method

The most important class of time integrators in Chrono are the DVI time
steppers. Those offer the highest generality because they able to solve
problems of non-smooth dynamics. On the other hand, DAE time steppers
such as the HHT time integrator explained later, cannot solve problems
with non-smooth contacts.

Currently there is only one tested DVI timestepper available:
chrono::ChTimestepperEulerImplicitLinearized, other will follow in
future.

We present a time stepping method inspired to the scheme developed in
[19].

Introducing a time step h, one can rewrite Eqns.106 in discrete form to
obtain the following problem to be solved when advancing from time step
t(l) to time step t(l+1). We recall the definition of impulses 4 γE such
that γE =

∫
[t,t+h)

dγ and we obtain the following DVI/MDI time stepping

scheme:

γE ∈ ΥE ⊥ ū(l+1)
E ∈ Υ∗E

M (l)(v(l+1) − v(l)) = f(q(l),v(l), t(l))h+D
(l)
E γE

q(l+1) = q(l) + hv(l+1)

(107a)

(107b)

(107c)

4 In smooth problems it boils down to γE = hγ̂E
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The time stepping of Eq.107 consists of three main operations that can be
computed in sequence:

– The CCP of Eq.107a is solved for unknowns γE . More details on how
to solve the CCP are discussed later.

– The linear system of Eq.107b is solved for unknowns v(l+1). This is
simple, because M is diagonal so it follows that M−1 can be com-
puted immediately.

– The new configuration q(l+1) is computed from Eq.107c. We remark
that, if rotations are present, the q(l) +hv(l+1) sum must be intended
in the sense of a Lie group exponential, as presented in Eq.54.

At this point we need to introduce also some stabilization terms; in fact the
integration process is affected by various numerical inaccuracies caused,
for instance, by integration errors, finite precision etc., hence errors could
accumulate up to the point that constraints would show a gradual and
visible drift. Also contacts would start to inter-penetrate after a certain
number of integration steps - and this would happen even if contact con-
ditions are satisfied exactly at the velocity level. A workaround to this
constraint drifting problem is obtained by introducing a stabilization term
that keeps constraints and contacts satisfied also at the position level [2].
We introduce:

bA =

[
1

h
Φ1, 0, 0 , ... ,

1

h
ΦnA , 0, 0

]T
, (108)

bB =

[
1

h
C1 +

∂C1

∂t
, ... ,

1

h
CnA +

∂CnA
∂t

]T
(109)

bE =
[
bTA , b

T
B
]T

(110)

and we introduce ū
(l+1)
E = ū

(l+1)
E + bE rewrite Eq.107a as

γE ∈ ΥE ⊥ ū(l+1)
E ∈ Υ∗E (111)

One can see that this is equivalent to enforcing:

1

h
Ci +∇CTi v(l+1) +

∂Ci
∂t

= 0 ∀i ∈ GA (112)

1

h
Φi +∇ΦTi v

(l+1) ≥ 0 ∀i ∈ GB (113)

respectively for bilateral contacts and for the surface-orthogonal direction
of unilateral contacts.

Note that the term ∂Ci
∂t helps when rheonomic constraints Ci(q, t) are

used, such as for motors and actuators, otherwise it is always null for
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scleronomic Ci(q) constraints. Also note that the stabilization term 1
hΦi

is applied only to the normal direction of the contacts 5.

The previous problem can be transformed in a form that fits better in
a computational framework. From Eq.72 one sees that local contact

and constraints velocities are function of generalized velocities, ū
(l+1)
E =

ūE(v
(l+1)), as well as Eq.107b shows that generalized velocities are func-

tion of reactions: v(l+1) = v(γE), so we aim at expressing ū
(l+1)
E = ūE(γE).

Introducing
k̃(l) = M (l)v(l) + hft(q

(l),v(l), t(l)),

and premultiplying by M (l)−1
Eq.107b, one gets

v(l+1) = M (l)−1
DEγE +M (l)−1

k̃. (114)

By introducing v(l+1) of Eq.114 in Eq.72, one has

ū
(l+1)
E = DT

EM
(l)−1

DEγE +DT
EM

(l)−1
k̃ + bE + ũE(v

(l+1)) (115)

To make the expressions more compact, we introduce the Delassus oper-
ator N and the vector r:

N = DT
EM

(l)−1
DE (116)

r = DT
EM

(l)−1
k̃ + bE (117)

In this way, we can write

ūE = NγE + r + ũE(v
(l+1)) (118)

We note that the ũE(v
(l+1)) term is a non-linear function of v(l+1), i.e.

also nonlinear function of γE , therefore Eq.111 becomes a NCP:

γE ∈ ΥE ⊥ ū(γE) ∈ Υ∗E (119)

5 Actually, using directly 1
h

Φi can give problems when using very small time steps h, in fact
if two bodies are inter-penetrating with Φi < 0 because of inevitable integration errors, such
stabilization term would cause an outbound separation speed that effectively will cancel the
interpenetration gap at the next time step, but will also cause an unnatural ’popping’ effect
at the following time steps. To overcome this issue, we rather use the modified stabilization
term:

max{
1

h
Φi,−ηs}

where ηs is a user-defined clamping threshold representing the maximum speed of penetration
recovery. In case it is zero, errors of inter-penetrations are never corrected, but no artificial
increase of energy is assured. We recommend using small values like ηs = 0.01[m/s]. We also
remark that such clamping is not needed for the 1

h
Ci stabilization term of bilateral constraints,

because the ’popping’ issue affects only unilateral constraints.
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As such, not only it is difficult to prove existence and uniqueness of the
solution, but major numerical difficulties arise when one needs to solve it.

In [1] it has been demonstrated that one can make the problem convex by
neglecting the ũE term, at the cost of accepting that the friction model
become associated. As shown in [4], this has the side effect that, during
sliding motion, a small gap proportional to h

∣∣∣∣vi,‖∣∣∣∣µi builds up, but it
does not increase any further, because of the Φ/h term that we added for
stabilization. This can be seen as a dilatation effect, whose magnitude
tends to zero or negligible values as the tangential sliding velocity vi,‖
is small (something that easily fits in simulations of falling or stacked
building blocks, for instance) or for small friction coefficients µi, or for
h ↓ 0.

If the ũ term is dropped, one can introduce uE = uE + bE as a simplified
version of the ūE term, which now becomes an affine function of γE :

uE = NγE + r (120)

Then, Eq.111 becomes a second-order convex CCP(ΥE , N, r):

γE ∈ ΥE ⊥ NγE + r ∈ Υ∗E (121)

As shown above (see Eq.29), this CCP is also equivalent to a VI with
affine F , hence (Eq.18):

γE ∈ ΥE : NγE + r ∈ NΥE (γE)

As such (see Eq.33) it is also equivalent to a convex program:

γE =argmin γTE NγE + γTE r

s.t. γE ∈ ΥE

(122a)

(122b)

We designed different numerical methods in order to solve the CCP of
Eq.121 or Eq.122.

One option is the fixed-point iteration presented in [4]. It is a variant of
the Gauss-Seidell stationary iteration, endowed with separable projections
on [4]; this method features algorithmic robustness and it is easy to imple-
ment, however it is affected by stall in convergence in scenarios where there
are long sequences of objects in contact, that is exactly what happens in
many problems of engineering interest, such as a stack of bricks.

This motivated our research on a method with superior convergence prop-
erties. This led us to P-SPG-FB, a modification of the Spectral Projected
Gradient method [5] that features also diagonal preconditioning and a fall-
back strategy to ensure monotone convergence, and that we presented in
[8]. The P-SPG-FB method operates a minimization of a function over
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separable convex constraints, so it exploits the formulation of the problem
in the form of Eq.122.

Another method that we implemented, again documented in [8], is
based on the Nesterov Accelerated Projected Gradient Descend (APGD)
method; it perform similarly to P-SPG-FB.

We are actively researching other alternative solvers for the CCP problem,
they will be documented in future.

We conclude by rewriting Eq.107b-Eq.107a of the DVI/MDI time stepping
using an alternative matrix expression for a single mixed-CCP: this form
is not used in the numerical method, that is still based on the three steps
of Eq.107, but it is useful to recapitulate all the terms:

 M DB DA
DT
B 0 0

DT
A 0 0

 v(l+1)

−γB
−γA

−


Mv(l) + hf (l)

− 1
hC

(l) − ∂C
∂t

(l)

− 1
hφ

(l)

 =

 0
0
uA


γA ∈ ΥA ⊥ uA ∈ Υ∗A

q(l+1) = q(l) + hv(l+1)

(123a)

9. The DAE time stepping methods

In this section we document some of the main time stepping methods
for performing the time integration of DAE problems, as implemented in
Chrono::Engine . Note: these DAE methods cannot deal with the case of
non-smooth dynamics (impacts, frictional contacts, etc) where only DVI-
MDI timesteppers can be used.

Assuming only smooth bilateral constraints, we recall Eq.99 as the DAE
formulation of our multibody problem:

M
dv

dt
= f(q,v, t) +DBγ̂B(t) (124)

C(q, t) = 0 (125)

This can be solved using the methods presented in the following.

Note: most DAE time steppers documented here are implicit integrators,
i.e. assume that the f(q,v, t) term is very stiff (it could be the case where
either the ∇qf or the ∇vf jacobians contains large numbers, for instance
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it could be the case where f is the internal force of finite elements and
−∇qf their tangent stiffness, in problem involving some FEA mixed with
multibody).

If we neglect the −∇qf and ∇vf terms, the time steppers start to behave
like explicit integrators, and they might require much smaller time steps
to avoid divergence. In fact the benefit of implicit time steppers is that
they are stable even at large time-steps.

Trapezoidal implicit

For simplicity, let’s start with the ODE case, i.e. also a DAE where no
constraints are present.

In this section we present the trapezoidal implicit integrator as a basic
method to solve a stiff ODE. Given a state s, a generic 1st order ODE is
expressed as:

ṡ = f(s, t)

and the trapezoidal implicit method, assuming timestep h where super-
script l + 1 means value at the end of timestep, is:

sl+1 − sl −
(
ṡl+1 + ṡl

2

)
h = 0 (126)

For a 2nd order ODE, as used in dynamics (btw the DAE case will be
dealt later), we use state y = {q,v}, ẏ = {v,a} so we have:

ql+1 − ql −
(
vl+1 + vl

2

)
h = 0 (127)

vl+1 − vl −
(
al+1 + al

2

)
h = 0 (128)

In general one has computable al and al+1, where in sake of compactness
we write al for a(ql,vl, tl), as well as al+1 for a(ql+1,vl+1, tl+1). Given
that in a mechanical context one splits f = Ma, and using the simplifica-
tion in Potra work on trapezoidal integrator for DVI, one can also write
the following (that fits in ODE too) where for brevity we write f l for
f(ql,vl, tl), as well as f l+1 for f(ql+1,vl+1, tl+1), :

ql+1 − ql −
(
vl+1 + vl

2

)
h = 0 (129)(

vl+1 − vl
) (
M l+1 +M l

)
− hf l+1 − hf l = 0 (130)
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Let’s call G = {Gq,Gv} the residual of the system above. To satisfy
G = 0, one can use a Newton-Raphson iteration (the subscribt means the
iteration number) and solve for the proper ql+1,vl+1:

G(ql+1,vl+1) = 0 (131)

G(ql+1
n ,vl+1

n ) +

[
∂Gq

∂q
∂Gq

∂v
∂Gv

∂q
∂Gv

∂v

]l+1

n

{
ql+1
n+1 − ql+1

n

vl+1
n+1 − vl+1

n

}
= 0 (132)

also using deltas as a more compact notation for corrections:

G(ql+1
n ,vl+1

n ) +

[
∂Gq

∂q
∂Gq

∂v
∂Gv

∂q
∂Gv

∂v

]l+1

n

{
∆ql+1

∆vl+1

}
= 0 (133)

or, in a even more compact notation for jacobian J , it boils down to a
Newton-Raphson step of the type

J

{
∆ql+1

∆vl+1

}
= −G(ql+1

n ,vl+1
n ) (134)

Now, note that a straight implementation of the above NR step is not
efficient since J would be highly sparse and unsymmetric. One can unroll
the equations, and from Eq.127 one gets ∆ql+1 = h

2 ∆vl+1, that allows 6

to rewrite as:

J =

[
∂Gq

∂q
∂Gq

∂v
∂Gv

∂q
∂Gv

∂v

]l+1

n

=

[
I −h2 I

−h∇qf l+1 (M l+1 +M l)− h∇vf l+1

]
(135)

Now one can put that jacobian in Eq.133, develop the equations and ar-
range them so that one can write the step Eq.133 as three substeps to be
repeated in sequence for each Newton iteration, until ∆ql+1 and ∆vl+1

go to zero. In such steps we define
(
M l+1+M l

2

)
= M̂ , that is often the

constant mass M in many cases. One gets the Newton step procedure:

6The fact that ∆ql+1 = h
2

∆vl+1 is used in various literature, but it is true only close to the

solution, when the residualGq is close to zero, otherwise it would be ∆ql+1 = h
2

∆vl+1−Gq =

h
2

∆vl+1 − ql+1 + ql +
(

vl+1+vl

2

)
h. However this might overly complicate the NR step that

follows.
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[
M̂ − h2

4
∇qf l+1 − h

2
∇vf l+1

]
∆vl+1 =

(
vl − vl+1

)
M̂ +

h

2
f l +

h

2
f l+1

vl+1
n+1 = vl+1

n + ∆vl+1

ql+1 = ql +

(
vl+1
n+1 + vl

2

)
h

(136)

(137)

(138)

where only the 1st step Eq.136 is the computationally intensive step. But
the matrix is hermitian, at least.

– Note that the residual in Eq.136 is the same residual of Eq.130, except
everything is divided by a factor 2 for convenience.

– Note that if the exact expression ∆ql+1 = h
2 ∆vl+1 − Gq is used,

the term −Gq must modify the residual in Eq.136 by adding ... +
h
2∇qf

l+1Gq that is ...+ h
2∇qf

l+1
(
ql+1 − ql −

(
vl+1+vl

2

)
h
)

.

– Note that ∇qf is −K, the stiffness matrix in structural elments, and
∇vf is −R, the damping matrix.

Euler implicit

The Euler implicit method (backward Euler), for a 2nd order ODE, is:

ql+1 − ql − vl+1h = 0 (139)

vl+1 − vl − al+1h = 0 (140)

Again, as with the trapezoidal, this can be solved with a Newton-Raphson
iteration. Let’s call G = {Gq,Gv} the residual of the system above.

J

{
∆ql+1

∆vl+1

}
= −G(ql+1

n ,vl+1
n ) (141)

where the jacobian, in this case, is:

J =

[
∂Gq

∂q
∂Gq

∂v
∂Gv

∂q
∂Gv

∂v

]l+1

n

=

[
I −hI

−h∇qf l+1 M̂ − h∇vf l+1

]
(142)
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Also in this case we defined
(
M l+1+M l

2

)
= M̂ , that is often the constant

mass M in many cases. By developing the expression above and by setting
∆ql+1 = h∆vl+1 one gets the Newton step procedure:

[
M̂ − h2∇qf l+1 − h∇vf l+1

]
∆vl+1 =

(
vl − vl+1

)
M̂ + hf l+1

vl+1
n+1 = vl+1

n + ∆vl+1

ql+1 = ql + hvl+1
n+1

(143)

(144)

(145)

Some remarks here.

– In Eq.145 one could use ∆ql+1 = h∆vl+1 and rather write ql+1
n+1 =

ql+1
n + h∆vl+1

n+1, but this is questionable.

– The single first step of this NR process is exactly the Euler semi-
implicit DVI in Chrono::Engine (not considering the constraints and
contacts, here) because one can express it with unknowns vl+1

n+1 rather
than deltas, so it can be also:[
M̂ − h2∇qf l+1 − h∇vf l+1

]
vl+1
n+1 =

[
M̂ − h2∇qf l+1 − h∇vf l+1

]
vl+1
n +

+
(
vl − vl+1

)
M̂ + hf l+1 (146)

ql+1 = ql + vl+1
n+1h (147)

and then, if at the first step we set vl+1
0 = vl, and assuming f l+1 ≈

f l, we simply get:[
M̂ − h2∇qf l+1 − h∇vf l+1

]
vl+1 =

[
M̂ − h2∇qf l+1 − h∇vf l+1

]
vl + hf l

(148)

ql+1 = ql + vl+1
n+1h (149)

(just by removing the stiffness and damping matrices ∇qf l+1,
∇vf l+1 if there are no finite elements, and by adding jacobians to
satisfy bilateral constraints, one turns Eq.148 into the same problem
solved by the DVI timestepper of Chrono::Engine if without unilat-
eral constraints)

Euler implicit, with constraints

Implemented in Chrono as chrono::ChTimestepperEulerImplicit

(or INT_EULER_IMPLICIT in chrono::ChSystem).

There are different options for the DAE solution, for instance use con-
straints in DAE implicit form F () to solve with Newton-Raphson, or do
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not solve them monolithically with DAE but just do projections on the
manifold at each Newton iteration, etc. Here we enforce constraints (at
the end of the time step) using a Newton-Raphson iteration, together with
the Euler first order approximation used in the constraint-less case.

Add constraints C(q, t) = 0. For brevity, denote

Cq = ∇qCT =
∂C

∂q
(150)

Ct = ∇tCT =
∂C

∂t
(151)

Also, in sake of compactness we write Cl for C(ql, tl), as well as Cl+1 for
C(ql+1, tl+1).

The Euler implicit method (backward Euler), for DAE with constraints
satisfied at the end of timestep, is:

ql+1 − ql − vl+1h = 0 (152)

M̂(vl+1 − vl)− hf l+1 − hCTq λl+1 = 0 (153)

C(ql+1, tl+1) = 0 (154)

Let’s call G = {Gq,Gv,Gc} the residual of the system above. Solving
with a Newton-Raphson iteration: I −hI 0

−h∇qf l+1 M̂ − h∇vf l+1 −hCTq
Cq 0 0

 ∆ql+1

∆vl+1

∆λl+1

 = −G (155)

By developing the expression above and by setting ∆ql+1 = h
2 ∆vl+1 (see

footnote in previous page) one gets the ’unrolled’ Newton step procedure,
where the hard part is the 1st step, the classical saddle-point problem:

[ [
M̂ − h2∇qf l+1 − h∇vf l+1

]
CTq

Cq 0

]{
∆vl+1

−h∆λl+1

}
={ (

vl − vl+1
)
M̂ + hf l+1 + hCTq λ

l+1

−Cl+1

h

}
vl+1
n+1 = vl+1

n + ∆vl+1

λl+1
n+1 = λl+1

n + ∆λl+1

ql+1 = ql + hvl+1
n+1

(156)

(157)

(158)

(159)
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Eulero semi-implicit, linearized

Implemented in Chrono as chrono::ChTimestepperEulerImplicitLinearized

(or INT_EULER_IMPLICIT_LINEARIZED in chrono::ChSystem, also alias
of obsolete INT_ANITESCU).

The single first step of NR process for the implicit Euler discussed above, is
exactly the Euler semi-implicit DVI in Chrono::Engine (assuming bilateral
constraints only, hence no contacts) if we do the single step with:

– vl+1
0 = 0 (so ∆vl+1 = vl+1

1 = vl+1)

– f l+1 ≈ f l

– λl+1
0 = 0 (so also λl+1 = λl+1

1 = ∆λ)

– approximating

Cl+1 = C(ql+1, tl+1) ≈ C(ql, tl) +
∂C

∂q
∆q +

∂C

∂t
∆t

Cl+1 = C(ql+1, tl+1) ≈ C(ql, tl) + Cq∆q +Cth

With those simplifications, we get:

[
M̂ CTq
Cq 0

]{
vl+1

−hλl+1

}
=

{
M̂vl + hf l

−Cl

h −Ct

}
ql+1 = ql + hvl+1

(160)

(161)

That is the Chrono::Engine DVI already presented in Eq.123 (in case
of bilaterals only). By the way in Eq. 160 we used M̂ instead of full
M̂ − h2∇qf l+1 − h∇vf l+1 for simplicity.

Trapezoidal, with constraints

Implemented in Chrono as chrono::ChTimestepperTrapezoidal

(or INT_TRAPEZOIDAL in chrono::ChSystem).

A possibility is to add to Eqs. 129 and 130 the following constraint that
requires positions to be satisfied at the end of the step:

C(ql+1, tl+1) = 0

and add reaction forces λ too, as f + ∇vCλ = Ma. This leads to the
following trapezoidal rule for DAE:
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ql+1 − ql −
(
vl+1 + vl

2

)
h = 0

(162)(
vl+1 − vl

) (
M l+1 +M l

)
− hf l+1 − hf l − h∇vClλl − h∇vCl+1λl+1 = 0

(163)

C(ql+1, tl+1) = 0
(164)

This done, one can express a Newton-Raphson process to compute the un-
knowns vl+1, vl+1, λl+1 that give a zero residualG for the three equations
above: I −h2 I 0

−h2∇qf
l+1 M̂ − h

2∇vf
l+1 −h2C

l+1,T
q

Cl+1
q 0 0

 ∆ql+1

∆vl+1

∆λl+1

 = −G (165)

This can be unrolled to work with a more friendly linear system with
hermitian matrix and two following uncoupled steps:

[ [
M̂ − h2

4 ∇qf
l+1 − h

2∇vf
l+1
]

Cl+1,T
q

Cl+1
q 0

]{
∆vl+1

−h2 ∆λl+1

}
={ (

vl − vl+1
)
M̂ + h

2

(
f l + f l+1 + Cl,Tq λl + Cl+1,T

q λl+1
)

− 1
hC

l+1

}
vl+1
n+1 = vl+1

n + ∆vl+1

λl+1
n+1 = λl+1

n + ∆λl+1

ql+1 = ql +
h

2

(
vl + vl+1

n+1

)

(166)

(167)

(168)

(169)

Trapezoidal, linearized

Implemented in Chrono as chrono::ChTimestepperTrapezoidalLinearized

(or INT_TRAPEZOIDAL_LINEARIZED in chrono::ChSystem). It is not yet
tested and we discourage using it, for the moment.

The single first step of NR process for the implicit Trapezoidal discussed
above, is similar to the 2nd order DVI timestepper (except contacts) that
is discussed in [12], when doing the single step with:

– vl+1
0 = 0 (so ∆vl+1 = vl+1

1 = vl+1)

– λl+1
0 = 0 (so also λl+1 = λl+1

1 = ∆λ)
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By the way, using λl+1
0 = 0 means that one computes sawtooth-like reac-

tion forces. On average, this is the same as having them flowing continu-
ously from one timestep to the other.

One can see that with those assumptions the computation boils down to:[
H Cl+1,T

q

Cl+1
q 0

]{
vl+1

−h2λ
l+1

}
=

{
M̂vl + h

2 (f l + f l+1)
− 1
hC

l+1

}
ql+1 = ql +

h

2

(
vl + vl+1

)
(170)

(171)

where one has

H =

[
M̂ − h2

4
∇qf l+1 − h

2
∇vf l+1

]
.

Note that, as in the linearized Euler implicit, in Eq. 170 one could ap-
proximate 1

hC
l+1 with the simpler expression 1

hC
l +Cl

t. This should be
tested.

Note that the method above requires an initial estimate of f l+1 and of
Cl+1
q ; these could be obtained by evaluating at an extrapolated 1st order

approximation of q,v. Another point that might be discussed is if Cl+1
q

can be approximated as Clq.

Newmark integrator

Implemented in Chrono as chrono::ChTimestepperNewmark

(or INT_NEWMARK in chrono::ChSystem).

The Newmark family of second-order integrators is very popular in the
FEM community.

One has

ql+1 − ql − hvl − h2

2

[
(1− 2β)al + 2βal+1

]
= 0 (172)

vl+1 − vl − h
[
(1− γ)al + γal+1

]
= 0 (173)

Mal+1 + (CTq λ− f)l+1 = 0 (174)

Different values of the γ and beta parameters provide different behaviors.

– The γ parameter usually ranges in the [1/2, 1] interval.
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– For γ = 1/2, no numerical damping.

– For γ > 1/2, numerical damping increases.

– The β parameter usually ranges in the [0, 1] interval.

– For β = 1/4, γ = 1/2 one gets the constant acceleration method.

– For β = 1/6, γ = 1/2 one gets the linear acceleration method.

– The method is second order accurate only for γ = 1/2.

For this type of method, considering constraints being enforced in the
DAE, the Newton iteration is represented again by a linear problem, this
time in accelerations:

[
H C

T

q

Cq 0

]{
∆al+1

∆λl+1

}
={

Mal+1 + (CTq λ− f)l+1

− 1
βh2C

l+1

}
al+1
n+1 = al+1

n + ∆al+1

λl+1
n+1 = λl+1

n + ∆λl+1

vl+1 = vl + h
[
(1− γ)al + γal+1

]
ql+1 = ql + hvl +

h2

2

[
(1− 2β)al + 2βal+1

]

(175)

(176)

(177)

(178)

(179)

where

H =
[
M − γh∇vf l+1 − βh2∇qf l+1 + βh2

[
(Ma)q + (Cq

Tλ)q
]]

HHT, with constraints

Implemented in Chrono as chrono::ChTimestepperHHT

(or INT_HHT in chrono::ChSystem).

The HHT integrator is a generalization of the Newmark family of second-
order integrators, and provides a control on the numerical dissipation yet
retaining a second order accuracy as the trapezoidal method.

One has

ql+1 − ql − hvl − h2

2

[
(1− 2β)al + 2βal+1

]
= 0 (180)

vl+1 − vl − h
[
(1− γ)al + γal+1

]
= 0 (181)

Mal+1 + (1 + α)(CTq λ− f)l+1 − α(CTq λ− f)l = 0 (182)
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The HHT method provides the A-stability and order provided that α ∈
[− 1

3 , 0] and

γ =
1− 2α

2
β =

(1− α)2

4
(183)

The closer to 0 is α, the less damping has the method, where for α = 0
one has precisely the trapezoidal method.

Looking at the work in [10], one sees that the Newton iteration is rep-
resented again by a linear problem with unknown accelerations and con-
straint forces:

[
H C

T

q

Cq 0

]{
∆al+1

∆λl+1

}
={ 1

1+α (Mal+1) + (CTq λ− f)l+1 − α
1+α (CTq λ− f)l

− 1
βh2C

l+1

}
al+1
n+1 = al+1

n + ∆al+1

λl+1
n+1 = λl+1

n + ∆λl+1

vl+1 = vl + h
[
(1− γ)al + γal+1

]
ql+1 = ql + hvl +

h2

2

[
(1− 2β)al + 2βal+1

]

(184)

(185)

(186)

(187)

(188)

where

H =
[
M − γh∇vf l+1 − βh2∇qf l+1 + βh2

[
(Ma)q + (Cq

Tλ)q
]]

Note the term βh2
[
(Ma)q + (Cq

Tλ)q
]
, could be omitted for faster per-

formance, at the risk of lower Newton convergence.

Generalized-α, with constraints

The generalized-α integrator is an evolution of the Newmark and HHT
methods, where a single parameter ρ∞ can be used to define the numer-
ical damping. Just like the HHT integrator, it is a second-order implicit
integrator that provides a control on the numerical dissipation yet retain-
ing a second order accuracy as the trapezoidal method.

We recall the second barrier of the Dahlquist theorem: there are no explicit
A-stable and linear multistep methods, and the implicit ones have order
of convergence at most 2. The trapezoidal rule has the smallest error
constant amongst the A-stable linear multistep methods of order 2. The
HHT and the generalized-α methods are among the few timesteppers of
practical interest that feature the second order of convergence, and that
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can solve constrained DAEs. In fact the trapezoidal method is confined
mostly to ODEs since it gives oscillatory unstable reactions in constraints
if used in DAEs.

In generalized-α one has

ql+1 − ql − hvl − h2

2

[
(1− 2β)al + 2βal+1

]
= 0 (189)

vl+1 − vl − h
[
(1− γ)al + γal+1

]
= 0 (190)

(1− αm)al+1 + αma
l = (1− αf )a ∗l+1 +αfa∗l (191)

Ma ∗l+1 +(CTq λ− f)l+1 = 0 (192)

The coefficients in the generalized-α method are automatically set as fol-
lowing, once the spectral value ρ∞ is set in the [0, 1] range:

αm =
2ρ∞ − 1

1 + ρ∞
(193)

αf =
ρ∞

1 + ρ∞
(194)

β =
1

4

(
γ +

1

2

)2

(195)

γ =
1

2
+ αf − αm (196)

Note that for ρ∞ = 0 one has the maximum asymptotic dissipation, and
the method introduce the maximum numerical damping (i.e. whatever
frequency is damped in a single step h).

One can see that the HHT method is like the generalized-α with αm = 0,
αf = α. Indeed they behave in a similar way, and they also are the only
implicit methods of practical interest that feature second-order accuracy
and that can solve constrained DAEs.

On the other side, the limit of ρ∞ = 1 has no numerical dissipation, just
like in the trapezoidal method. Differently from the trapezoidal method,
though, this integrator behaves well with constrains and does not lead to
oscillatory reactions in constraints.

Of course it is always convenient to introduce some artificial numerical
dissipation even if the system, at the physical level, is not dissipative at
all. This because, even with simplectic integrators, numerical issues might
lead to increasing hamiltonian after many oscillations - something that in
the long run is more likely to cause divergence and bad artifacts.

Usually, an intermediate ρ∞ ∈ [0, 1] value is used. This helps the user to
discard unnecessary high frequency oscillations that are of little interest,
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ant that would just hamper the performance of the solver. Setting a proper
value of ρ∞ in general, non-linear cases, is often an heuristic process. One
can start with a near zero value and raise it by repeating the same test
simulation, until unnecessary high frequency oscillations start to appear.

The Newton iteration is represented again by a linear problem. As with
the HHT case, the iteration can be expressed at the acceleration level, at
the velocity level, at the configuration (i.e. position) level. Here we report
the iteration with position (increments) as unknowns:

[
H C

T

q

Cq 0

]{
∆ql+1

∆λl+1

}
={

rq

rλ

}
ql+1
n+1 = ql+1

n + ∆ql+1

vl+1
n+1 = vl+1

n + γ′∆ql+1

a∗l+1
n+1 = a ∗l+1

n +β′∆ql+1

λl+1
n+1 = λl+1

n + ∆λl+1

(197)

(198)

(199)

(200)

(201)

where

H =
[
∇q
[
Mal+1 − f l+1 + CTq λ

l+1
]
− γ′∇vf l+1 + β′Ma−

]
and

β′ =
1− αm

h2β(1− αf )

γ′ =
γ

hβ
.

After the iteration has converged, one updates

al+1 = al +
1− αf
1− αm

a∗l+1

and similarly, before starting the iteration, ql+1
n , vl+1

n , al+1
n are initialized

with proper formulas.

Note that the term ∇q
[
Mal+1 − f l+1 + CTq λ

l+1
]

could be simplified, ap-

proximating to −∇qf l+1 for higher performance, at the risk of a worse
convergence in the Newton loop.

Note that, although the method is unconditionally stable, this theoretical
result holds for linearly stiff problems. This means that the method might
still diverge if too large h is used in real cases that feature marked nonlinear
geometric behaviour or highly nonlinear material properties.
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Also, the Newton iteration is not guaranteed to converge in highly nonlin-
ear cases. For instance, when dealing with buckling and near-bifurcation
situations, some continuation or globalization strategies in the Newton
computation are required, otherwise smaller timesteps must be used any-
way.

10. Abstracting a common solver architecture

Looking at equations in boxed frames for all the smooth DAE time-
steppers, one can see that all methods share a common feature: at each
time step there is one (or more) linear system to solve that has a saddle-
point structure, usually (but not always) with unknowns about velocities
and reactions, always with such structure:[

H Dt

D 0

]{
x
λ

}
=

{
a
b

}
(202)

Similarly, also non-smooth DVI-MDI time steppers lead to problems that
can be written in a compact matrix form; this time they are not simple
linear systems but rather VIs (here, CCPs in mixed form); the interesting
part is that again one have a system-level matrix with the same structure:[

H Dt

D 0

]{
x
λ

}
−
{
a
b

}
=

{
0
u

}
(203)

λ ∈ Υ⊥u ∈ Υ∗ (204)

What happens in Chrono::Engine, is that each ChPhysicsItems contained
in the ChSystem is in charge of ’filling’ the a and b residuals in the different
ways that are requested by the different integrators. Same for H, that is
is always a combination of M̂ , ∇qf , ∇vf , according to three coefficients
required by the integrator.

Then, a solver is asked to solve the problem of Eq.202. Some solvers can
solve also CCPs in the form Eq.203-203.

Currently, Chrono::Engine provides various solvers that can be used to
solve such types of problems. Look at the root class chrono::ChSolver

for a list. In chrono::ChSystem one can switch easily between them using
these enums:

– SOLVER_SOR, SOLVER_SYMMSOR, SOLVER_JACOBI,
SOLVER_SOR_MULTITHREADED that are projected fixed-point methods,
capable of solving both the problem when it is a linear problem and
when it is a CCP, they are robust but their convergence is very slow;

– SOLVER_BARZILAIBORWEIN, SOLVER_APGD, that are Krylov and spec-
tral methods, capable of solving both the problem when it is a linear
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problem and when it is a CCP, with better convergence than fixed
point methods;

– SOLVER_MINRES is a Krylov methods, capable of solving only linear
problems, it cannot solve the CCP; the convergence can be trouble-
some if there are large mass ratios in the system;

Additional solvers are available, that can be plugged in ChSystem if op-
tional units are compiled. For example:

– the MKL solver chrono::ChSolverMKL in the MKL module, that is a
direct method that wraps the PARDISO parallel direct solver in the
Intel’s MKL library; large mass ratios are not an issue; as a direct
solver it offers the highest precision but the drawback is that it is
capable of solving the problem when it is a linear problem, it cannot
solve the CCP.

– the Matlab solver chrono::ChSolverMatlab, in the MATLAB module,
that is a direct method that wraps the Matlab parallel direct solver.
To be used only for debugging and benchmarks.

More solvers will follow in future. 7

More information available in Chrono::Engine web site.

11. On existence and uniqueness of solutions

We have seen that the CCP of the DVI-MDI problem can be posed as a
convex optimization problem under the relaxed hypothesis of associated
Coulomb friction. We remark that for problems with pure rolling contacts
or for static problems, having relaxed the Coulomb model has no impact
at all.

For the relaxed version of the CCP problem, one can elaborate some con-
ditions for the existence and uniqueness of the solution. In fact this leads
to the topic of constraint qualification, a field that has been actively re-
searched in computational optimization during the last decades.

A constraint qualification (CQ) provide necessary conditions for optimality
in 31, using an algebraic description of K that allow its local geometry
at a feasible point x to be recovered from the gradients of the active

7 At the current state, only chrono::ChSolverMKL, chrono::ChSolverMatlab and the
SOLVER MINRES solver of chrono::ChSolverMINRES can be used to solve problems that
embed finite elements. This because other solvers pass through the inversion of the Schur
complement of the saddle point matrix, something that is easy only if the H matrix is just
a diagonal mass matrix M , whereas adding also the ∇qf and ∇vf matrices (i.e. tangent
stiffness for finite elements) make the inversion of the Schur complement not practical. The
problem is that none of these three solvers is able to solve a CCP problem, they are purely
solvers for linear problems, so they cannot be used for rigid contacts in DVIs.
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constraints. In fact the optimality condition 32 is expressed at a geometric
level and it is difficult to use directly. Some useful algebraic CQ are:

– The Guignard constraint qualification (GCQ) requires F◦K(x) =
T ◦K(x), where F(x) is the linearized cone at x, This is the weakest
CQ and it turns 32 into the KKT conditions, via ∇f(x) ∈ −F◦K(x).

– The Abadie constraint qualification (ACQ) requires FK(x) = TK(x),
and is stronger than GCQ.

– The Mangasarian-Fromovitz constraint qualification (MFCQ) re-
quires that the gradients of the active constraints must be positively
linearly independent. Ex.: for gi ≤ 0 constraints, introducing the set
of active constraints at x as: I(x) = {x|gi(x) = 0}, it means that
there exist a vector d such that ∇giTd < 0, ∀i ∈ I(x).

– The Linear Independence Constraint Qualification (LICQ) requires
the linear independence of the gradients of the active constraints at
the point of interest. For bilateral constraints only, it boils down to
require that the jacobian of constraint equations has full rank.

One has LICQ ⇒ MFCQ ⇒ ACQ ⇒ GCQ.

To proceed further with the case of frictional constraints, we introduce the
following concepts.

Definition 1 The Generalized Friction Cone YΥ is a convex cone defined as

YΥ =

{
fc =

∑
i∈GA∗

Diγ̂i

∣∣∣∣∣γ̂i ∈ Υi,∀i ∈ GA∗

}
, (205)

where GA∗ ⊂ GA is the set of active contacts with Φi = 0.

According to [3], one can see that under assumptions on the regularity of
YΥ, there is an unique solution in terms of the dual variables γ. This requires
the following

Definition 2 The Pointed Friction Cone Constraint Qualification (PFCCQ)
means

YΥ satisfies PFCCQ⇔

{
∀(γ̂i ∈ Υi) 6= 0,∀i ∈ GA∗, it must be

∑
i∈GA∗

Diγ̂i 6= 0

}
.

(206)

Equivalently this means that there are no combinations of non-zero con-
straint multipliers (that fit the Coulomb cones) whose net effect is zero in terms
of generalized torques/forces.

However it is easy to see that PFCCQ does not hold in general for many
problems. One can consider the case of a body at rest on a table, with three or
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more contact points: there are infinitely many horizontal reaction forces that
satisfy the equilibrium, provided that they fit in the friction cones and that they
cancel out in the horizontal plane.

The non-uniqueness of solutions of the dual variables for the hard-contact
cases is a known problem. Many solvers for the problem 31 are still able to
find one of the infinite solutions, and at least, the solution in terms of primal
variables (the speeds) is unique.
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