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Abstract

The present work introduces a custom T (T,�) algebra which is used to express
kinematic transformations in the Chrono::Engine programming interface. Floating
frames are considered C++ objects that carry data about position, rotation, speed
and acceleration as a whole, and define an algebraic structure: the T(T ,�) group.
In this work we present the main properties of such group and then we show how
these features are implemented in the Chrono::Engine library using C++ operator
overloading, so that coordinate transformations can be performed with a very compact
syntax.

1. Introduction

One of the most interesting features of C++ and similar languages, is the ability
of overloading operators between objects, so that common mathematical opera-
tors such as +, −, ∗, /, etc., can be customized in a sense that they can operate
over complex objects. This led us to implement a system in Chrono::Engine
where the operator-overloading capabilities of the C++ language are used to
create an algebra between objects that represent moving references in three
dimensional space.

Theoretical, applied and computational mechanics often require coordinate
transformations, for instance one might need to compute the absolute position
of points given their relative position respect to rigid frames which move in
space [3]. In this case, the transformation can be expressed as an affine map
using matrix algebra or similar formalisms.

Additionally, considerthe case of a kinematic chain of moving frames, where
the position of each frame is known respect to the previous frame in the chain:
the absolute position of the end of the chain can be expressed as a sequence of
affine transformations. This case is often met in robotics, multibody simulation,
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kinematics [9]. In literature a common way to express this kind of consecutive
transformations is the Denavit-Hartenberg approach [6], where 4x4 matrices are
used to express rotations and translations with a single matrix multiplication;
these matrices are multiplied to express sequences of coordinate transformations
as in robotic arms.

The algebra implemented in Chrono::Engine , instead, includes also speeds
and accelerations: in fact if in a chain of frames also the relative speed and
relative acceleration of each frame is known respect to the previous frame in the
chain, an algorithm might also find the absolute position, speed and acceleration
of the end of the chain.

We define a � operator such that a sequence of � operations corresponds to
a chain of coordinate transformations. An example can explain this: consider
χi,(j) as a data that represent the position, speed and acceleration of the frame
i respect to coordinate j; therefore in the example of Fig.1 the sequence of
transformations can be written as:

χc,(a) = χc,(b) � χb,(a). (1)

Also, one can use the previous transformation to get rc,(a), that is the ab-
solute position of the origin of 3 respect to the absolute coordinate system 0,
since

χc,(a) = {rc,(a),qc,(a), ṙc,(a), ωc,(a), r̈c,(a), αc,(a)}.

The interesting fact is that in Chrono::Engine the elements χi,(j) are C++
objects of the chrono::ChFrameMoving class, and the � operator becomes the
>> operator. We recall that such approach also includes speed and acceleration
transformations in a single operation. For instance, the absolute speed of c is
also contained in χc,(a), and depends on angular velocities and speeds of all
other systems in the chain.
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Figure 1: Example of chained transformation
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2. The T (T,�) algebra
It is known [7] [4] that the so called special Euclidean group of rigid transfor-
mations in three dimensional space, SE(3), is the semi-direct product of the two
Lie soubgroups: SO(3), the Lie group of isometries with fixed point [5], and R3,
for translations; that is SE(3) = SO(3) oR3.

Aiming at a group algebra that succintly transforms also velocities and ac-
celerations, we introduce the group T SO(TSO,�) whose non-abelian operator �
acts over a 18-dimensional manifold

TSO = {R3 o SO(3) oR6 oR6}.

The � operator has arity ᾱ = 2.
This algebra will be used to manage coordinate transformations: each el-

ement χ ∈ TSO can represent a frame in three-dimensional space, including
position, rotation information, as well as speed and acceleration information.

Here we remark that, although rotations could be parametrized with a set
of three angles, it is well known that, given the topology SO(3), this could cause
problems of singularities because R3 is not omeomorphic to SO(3). Therefore
we parametrize SO(3) with unitary quaternions q ∈ S3, i.e. q ∈ H1, whose
adoption in the context of computer simulation proved to be very reliable and
practical. The only drawback is that S3 is not exactly isomorphic to SO(3),
being its double cover. Yet this is not a big issue (the only drawback is that
there are two distinct quaternions per a single rotation), so we can rather work
with an epimorphism of T SO(TSO,�), that is T (T,�), using quaternions:

T = {R3 o S3 oR6 oR6}.

The speed of the origin of the frame is denoted with ṙ ∈ R3, its angular
speed is denoted with ω ∈ R3 (expressed in the base of the moving frame).
Similarly we denote acceleration with r̈ and angular acceleration with α, the
latter being expressed in the local base of the moving frame. Thus, we define
the vector χ ∈ T for r ∈ R3, q ∈ S3, ṙ, ω, r̈, α ∈ R3, as :

χ = {r,q, ṙ, ω, r̈, α}.

From now on, assuming that position, rotation, speed and acceleration of a
frame a in χa are expressed relative to another frame b, we will use the notation
χa,(b). Also, we will denote the frame b as the parent frame of a or, similarly,
a as the child frame of b. The definition of the � operation stems from the
requirement that
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χa,(c) = χa,(b) � χb,(c)

ra,(c)
qa,(c)
ṙa,(c)
ωa,(c)
r̈a,(c)
αa,(c)


=



ra,(b)
qa,(b)
ṙa,(b)
ωa,(b)
r̈a,(b)
αa,(b)


�



rb,(c)
qb,(c)
ṙb,(c)
ωb,(c)
r̈b,(c)
αb,(c)


(2)

By applying expressions for kinematic transformations in three dimensional
space, in the following subsections we develop the expressions for the terms in
Eq.(2).

Product: position and rotation part

As known [8], the morphism

qor = qeqrq
∗
e. (3)

is || · ||2-norm preserving and rotates a quaternion qr ∈ H by means of an
unimodular quaternion qe ∈ S3 and its conjugate q∗

e.
Expression (3) can be used to rotate points in space, with rotation repre-

sented in form of Euler parameters qe and qr as a so-called pure quaternion
with imaginary part as the cartesian coordinates of a point:

qr = =(r) ≡ {0, rx, ry, rz}.

Therefore, the affine transformation of the point ra,(b) after rotation qb,(c)
and translation rb,(c) can be expressed as:

=(ra,(c)) = =(rb,(c)) + qb,(c)=(ra,(b))q
∗
b,(c). (4)

This Eq.(4) has a counterpart in linear algebra:

ra,(c) = rb,(c) + [A(qb,(c))]ra,(b). (5)

where we introduced the rotation matrix [A(qb,(c))] function of a quaternion
qb,(c) as described, for instance, in [8].

The term qa,(c), representing the rotation of the reference a respect to the
reference c, can be easily obtained with a single quaternion product:

qa,(c) = qb,(c)qa,(b) (6)

as can be seen applying the affine map (4) twice, for transforming a point p
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from reference a to reference b and from reference b to reference c:

=(rp,(c)) ==(rb,(c)) + qb,(c)
(
=(ra,(b))+

qa,(b)=(rp,(a))q
∗
a,(b)

)
q∗
b,(c)

==(rb,(c)) + qb,(c)=(ra,(b))q
∗
b,(c)+

qb,(c)qa,(b)=(rp,(a))q
∗
a,(b)q

∗
b,(c)

==(ra,(c)) + qa,(c)=(rp,(a))q
∗
a,(c).

Product: the velocity part

Speed terms ṙa,(c) and ωa,(c) can be obtained from symbolic differentiation of
Eq.(4) and Eq.(6). By applying the chain rule to the differentiation of the affine
map of Eq.(4):

=̇(ra,(c)) ==̇(rb,(c)) + q̇b,(c)=(ra,(b))q
∗
b,(c)+

qb,(c)=̇(ra,(b))q
∗
b,(c) + qb,(c)=(ra,(b))q̇

∗
b,(c)

=̇(ra,(c)) ==̇(rb,(c)) + 2q̇b,(c)=(ra,(b))q
∗
b,(c)+

qb,(c)=̇(ra,(b))q
∗
b,(c)

We note that =̇(r) = =(ṙ), hence we get:

=(ṙa,(c)) ==(ṙb,(c)) + 2q̇b,(c)=(ra,(b))q
∗
b,(c)+

qb,(c)=(ṙa,(b))q
∗
b,(c). (7)

Similarly, one can perform the time derivative of the expression of Eq.(6):

q̇a,(c) = q̇b,(c)qa,(b) + qb,(c)q̇a,(b). (8)

The angular velocity ωa,(c) of χa,(c), expressed in the coordinates of reference
a, follows immediately the quaternion derivative q̇a,(c) obtained with Eq.(8)
using the following formula, discussed in [8]:

=(ωa,(c)) = 2q∗
a,(c)q̇a,(c). (9)

Product: the acceleration part

The last two parts of the χa,(c) vector are the acceleration r̈a,(c) and the angular
acceleration αa,(c).
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By differentiation of Eq.(7):

=̈(ra,(c)) ==̈(rb,(c))+

2q̈b,(c)=(ra,(b))q
∗
b,(c)+

2q̇b,(c)=̇(ra,(b))q
∗
b,(c)+

2q̇b,(c)=(ra,(b))q̇
∗
b,(c)+

+ q̇b,(c)=̇(ra,(b))q
∗
b,(c)+

qb,(c)=̈(ra,(b))q
∗
b,(c)+

qb,(c)=̇(ra,(b))q̇
∗
b,(c)

==̈(rb,(c))+

2q̈b,(c)=(ra,(b))q
∗
b,(c)+

4q̇b,(c)=̇(ra,(b))q
∗
b,(c)+

+ 2q̇b,(c)=(ra,(b))q̇
∗
b,(c)+

qb,(c)=̈(ra,(b))q
∗
b,(c)

and finally, as =̈(ra,(c)) = =(r̈a,(c)), it is:

=(r̈a,(c)) ==(r̈b,(c)) + 2q̈b,(c)=(ra,(b))q
∗
b,(c)+

4q̇b,(c)=(ṙa,(b))q
∗
b,(c)+

+ 2q̇b,(c)=(ra,(b))q̇
∗
b,(c)+

qb,(c)=(r̈a,(b))q
∗
b,(c) (10)

Interms of quaternion derivative, angular acceleration follow from the differ-
entiation of the epression of Eq.(8):

q̈a,(c) =q̈b,(c)qa,(b) + q̇b,(c)q̇a,(b)+

q̇b,(c)q̇a,(b) + qb,(c)q̈a,(b)

=q̈b,(c)qa,(b) + 2q̇b,(c)q̇a,(b) + qb,(c)q̈a,(b) (11)

As a vector, the classical angular acceleration αa,(c) of χa,(c), expressed in
the coordinates of reference a, is obtained from the quaternion q̈a,(c) of Eq.(11)
and from the differentiation of Eq.(9):

=(αa,(c)) = 2q̇∗
a,(c)q̇a,(c) + 2q∗

a,(c)q̈a,(c) (12)

3. Properties of the T (T,�) algebra
This section presents some interesting properties of the T (T,�) algebra.

• The manifold T is a topological space,
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• The entire T is a double cover of TSO = {R3 o SO(3) o R12} because
of the epimorphism r : S3 → SO(3,R). Also, it is isomorphic to TSU =
{R3 o SU(2) oR12}.

• The T (T,�) algebra is a group with dim/R = 18, and it has the properties
of closure, associativity, identity, existence of inverse element.

Here we demonstrate that T (T,�) has a neutral element and an inverse
element.

THEOREM 1

The T (T,�) algebra has an identity element χI ∈ T.

Proof. Let consider an element χI ∈ T as χI = {0,qI ,0,0,0,0}, where qI
is the unitary quaternion 1 + 0i+ 0j + 0k.

The product χa = χb � χI gives χa = {ra,qa, ṙa, ωa, r̈, αa}. According to
the definition of Eq.(4), the position term can be made explicit as:

=(ra) = =(0) + qI=(rb)q
∗
I .

Since qI=(rb)q
∗
I = =(rb) by property of quaternion multiplication, it is also

=(ra) = =(rb) (13)

Also, Eq.(6) becomes
qa = qIqb = qb. (14)

Now, expressing the speed and acceleration terms using definitions (7, 8), 10,
11): and using the properties of quaternion multiplications, it simplifies to:

=(ṙa) ==(0) + 2(0=(rb)q
∗
I)+

qI=(ṙb)q
∗
I = =(ṙb) (15)

q̇a =0qb + qI q̇b = q̇b (16)

=(r̈a) =0 + 2(0=(rb)q
∗
I)+

4(0=(ṙb)q
∗
I) + 2(0=(rb)0

∗)+

qI=(r̈b)q
∗
I = =(r̈b) (17)

q̈a =0qb + 2(0q̇b) + qI q̈b = q̈b. (18)

Given Eq.(13-18) and properties (9),(12), one gets χa = χb � χI = χb. Thus
� χI is the right-neutral element of the T (T,�) algebra.

One can demonstrate in a similar fashion that χI is also a left-neutral element
in the T (T,�) algebra.

Give that this magma structure has both right and left-neutral elements,
T (T,�) is also a monoid with χb � χI = χI � χb = χb. QED.

The commutative property does not hold, and this is shown in the following
theorem that also provides the explicit expression for the inverse element.
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THEOREM 2

The T (T,�) algebra is a non-abelian group.

Proof.
For the T (T,�) monoid algebra to be a group, each element χ must have

an inverse element χ−1 such that χ−1 � χ = χI , where χI is the neutral elment
introduced in Theorem 1.

Recall the product in Eq.(2). If χa,(b) � χb,(c) = χI , then χa,(b) is the left-

inverse of χb,(c), and will be denoted as χ−1L
b,(c). Also, χb,(c) is the right-inverse of

χa,(b), and will be denoted as χ−1R
a,(b). If right and left inverses exist,

χa,(b) � χ−1R
a,(b) = χI , χ−1L

b,(c) � χb,(c) = χI

Setting χa,(c) = χI in the product of Eq.(2), one can write χa,(b) � χb,(c) = χI ,
then it will be possible to manipulate the definitions in Eq.(4-11) to find the
expression of the left-inverse by explicitating the terms belonging to χa,(b).

Focusing on transformation of positions, we rewrite Eq.(4) as:

=(rb,(c)) + qb,(c)=(ra,(b))q
∗
b,(c) = =(0).

By left-multiplying all terms by quaternion q−1
b,(c) and right-multiplying all terms

by q∗−1
b,(c), and remembering quaternion algebra properties qq−1 = {1, 0, 0, 0} and

q{1, 0, 0, 0} = q , q ∈ H1, it is easy to find:

=(ra,(b)) = −q−1
b,(c)=(rb,(c))q

∗−1
b,(c). (19)

This is the first element of the left-inverse vector, that in our proof is χa,(b) =

χ−1L
b,(c).

For rotations, remember that the rotation part q in the neutral element χI
is the unit quaternion {1, 0, 0, 0} as demonstrated in Theorem 1, and rewrite
Eq.(6) as follows:

qb,(c)qa,(b) = {1, 0, 0, 0}.

So, using quaternion inverses, multiplying by q−1
b,(c), one obtains the rotational

part of the left-inverse:
qa,(b) = q−1

b,(c). (20)

Set Eq.(7) to zero for computing the speed part of the inverse:

=(ṙb,(c)) + 2q̇b,(c)=(ra,(b))q
∗
b,(c)+

qb,(c)=(ṙa,(b))q
∗
b,(c) = =(0)

After some algebra:

=(ṙa,(b)) =q−1
b,(c)(−=(ṙb,(c))+

2q̇b,(c)q
−1
b,(c)=(rb,(c)))q

∗−1
b,(c). (21)
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Requiring that q̇a,(c) is null in Eq.(8), it follows:

q̇a,(b) = −q−1
b,(c)q̇b,(c)q

−1
b,(c). (22)

Using other simplifications, recalling q∗−1q∗ = {1, 0, 0, 0}, one finally gets
the acceleration part of the left inverse, obtaining:

=(r̈a,(b)) =q−1
b,(c)[−=(r̈b,(c)) + 2q̈b,(c)q

−1
b,(c)=(rb,(c))

+ 4q̇b,(c)q
−1
b,(c)(=(ṙb,(c))

− 2q̇b,(c)q
−1
b,(c)=(rb,(c)))

+ 2q̇b,(c)q
−1
b,(c)=(rb,(c))q

−1
b,(c)q̇

∗
b,(c)]q

∗−1
b,(c)

and
q̈a,(b) = q−1

b,(c)(q̈b,(c) − 2q̇b,(c)q
−1
b,(c)q̇b,(c))q

−1
b,(c). (23)

Finally, using Eq.(9) and Eq.(12), substitute Eq.(19-23) into χa,(b), that is

the left-inverse χ−1L
b,(c) which satisfies χa,(b) � χb,(c) = χ−1L

b,(c) � χb,(c) = χI .

Similarly, we could solve χa,(b) � χb,(c) = χI for χb,(c): after long symbolic
manipulation (not reported in these pages in sake of compactness) we would
obtain the same results of Eq.(19-23), but with inverted subscripts, that is with
a, (b) swapped with b, (c).

Hence we built the right-inverse χ−1R
a,(b) and we conclude that, for a generic

element χ ∈ T, right- and left-inverses are the same, that is χ−1R = χ−1L = χ−1.
Given the existence of the inverse, the algebra is a group.

Note that the group is non-abelian since the � operation is non commu-
tative. QED.

4. Software implementation

The T (T,�) algebra is implemented in C++ in the Chrono::Engine API
using operator overloading and object-oriented programming. In our ap-
proach, χ ∈ T elements are represented by objects inherited from the
chrono::ChFrameMoving.

Moreover, a subset of the methods exposed here has been implemented in
a simpler C++ parent class called chrono::ChFrame, that deals only with
the translation and rotation and carries no information about velocities and
accelerations. In this way, depending on the problem type, the developer can
choose when using a fast chrono::ChFrame object or a more powerful but
slower chrono::ChFrameMoving.

Those classes are templated, so one can have ChFrameMoving<double>, or
the less precise ChFrameMoving<float>, and by default ChFrameMoving<> uses
double.
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For these classes, we overloaded C++ binary and unary operators in order
to express the Lie group products by a simple syntax. We recall that the usual
way of expressing transformations in kinematics is by using a right-to-left con-
catenation, as expressed in χa,(c) = χb,(c) · χa,(b), but here we also introduced
an alternative operator, denoted with �, for expressing the same result with
a left-to-right concatenation: χa,(c) = χa,(b) � χb,(c). Both could correspond
to overloaded operators in C++; for instance in our implementation they are,
respectively, * and >>.

The following operators have been implemented:

• The · right-to-left transformation is mapped to the * operator,
so that χc = χa · χb is becomes c = a * b.

• The � left-to-right transformation is mapped to the >> operator,
so that χc = χa � χb becomes c = a >> b.

• The *= on-place operator has been used for an efficient implementation of
self right-multiplication,
so χa := χa · χb becomes a*=b,

• The >>= on-place operator has been used for an efficient implementation
of self left-multiplication,
so χa := χa � χb becomes a>>=b,

• The inversion χ−1 is implemented in C++ language by redefining the !

unary operator,

• The vector-by-frame heterogeneous binary operators are implemented,
for example as in v a = v b >> frame, or v a = frame * v b.

A synoptic table with a schematic view of the most important operators is
shown in Table 1.

The last point is also one of the motivation that lead us to implement the
>> left-to-right transformation as an alternative to the usual right-to-left trans-
formation. In fact, if one must transform a simple point through two (or more)
frames in sequence using a single line one could write
v a = frame2 * frame1 * v b

as well as
v a = v b >> frame1 >> frame2

but in the first case, if no parentheses are used, most C++ compilers1 would
start parsing the formula from the left, creating a temporary frame for the
result of frame2 * frame1, and then they will perform the frame-by-vector op-
eration; whereas in the second case the temporary object would be a vector,
that is computationally more efficient.

Nonetheless, in sake of completeness, we also implemented the * operator if
users prefer to use the right-to-left ordering.

1This behavior is not requested by the ISO standard, but it happens most times.
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We took the design decision to work with objects where angular speeds
and angular accelerations are represented directly with quaternions q̇ and q̈
rather than with 3D vectors ω and α. Thank to the encapsulation paradigm
of OOP, this design does not affect the way the programmer interacts with the
data, because custom functions can provide ω and α only when requested, by
evaluating Eq.(9) and Eq.(12). Viceversa, the user can provide ω or α, and
these are instantly converted to q̇ and q̈ using inverse formulas.

Since we used this software library in many engineering projects, we were
able to make a statistical analysis and we found that, in most cases, an object
of chrono::ChFrameMoving class is used simply to transform 3D points, and
only in few cases one is interested also in speeds and accelerations. This means
that the most important function is the one in Eq.(4), which we implemented in
different flavours for optimal execution speed. For example, if a single object of
chrono::ChFrameMoving type must transform many 3D vectors at once, we can
use Eq.(5), which is a bit faster than Eq.(4) because rotation by matrix-vector
multiplication (after the matrix has been initialized once, with the nine values)
takes less time than computing the quaternion endomorphism. However this op-
timization implies that a 3x3 matrix is stored in the chrono::ChFrameMoving

object, for easing the case of multiple point transformations; the nine values of
the matrix are recomputed when the rotation of the frame changes. The im-
proved performance is worth while the overhead of keeping such matrix updated,
and the increased memory requirement.

So far, each chrono::ChFrameMoving object contains three vectors
chrono::ChVector, three quaternions chrono::ChQuaternion and an aux-
iliary 3x3 matrix chrono::ChMatrix33:

χc++ = {r,q, [A(q)], ṙ, q̇, r̈, q̈}.

The ChFrame object contains only r, q, [A(q)].
An useful feature of the C++ language is the operator overloading, wich al-

lows a straightforward mapping of the T (T,�) algebra into a new programming
syntax where the � operator can be represented as a binary operator between
two chrono::ChFrameMoving objects. To avoid confusion with default opera-
tors *,+,-,/, we decided to use the >> symbol to represent the � operation.

Such operation is implemented in the header of the
chrono::ChFrameMoving class, using the following binary operator over-
loading:

ChFrameMoving<Real> operator >> (...)

In the function above, the formulas in Eq.(4-11) are evaluated, where the
return value represents the resulting vector χa,(c), the object itself (the this

pointer) is the left argument χa,(b) and parameter Fb is the right argument
χb,(c).

Thus, the example of Eq.(1), shown in Fig.1, could be written with the
following source code:
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ChFrameMoving<> cs 30, cs 32, cs 21, cs 10;

cs 10.coord.pos = ChVector<>(2,4,1);

... etc ...

cs 30 = cs 32 >> cs 21 >> cs 10;

We also implemented the (·)−1 operation, with arity ᾱ = 1, by overloading
the ! C++ unary operator. This requires the in-place evaluation of Eq.(19-
23). We choose the ! symbol for readability reasons and because it has higher
precedence than >> in C++ syntax, so parentheses are rarely needed.

Thank to the implementation of the inversion, it is possible, again in example
of Fig.1, to obtain cs 32 if other frames are known: we multiply both sides
by !cs 10 and !cs 21, and remembering that cs ij >> !cs ij will cancel by
Theorems 1 and 2, we simply write

cs 32 = cs 30 >> !cs 10 >> !cs 21;

Note that the previous statement would require two inversions and two co-
ordinate transformations, but a more efficient approach can be developed. In
fact we can implement an inverse transformation operator, named <<, which
requires fewer CPU operations:

cs 32 = cs 30 << cs 10 << cs 21;

For reasons of space, details about the implementation of the << operator
are not given; suffices to say that formulas are not much different from the
ones in Eq.(19-23). Also, we remark that such << operator is not associative
(although, given that C++ compilers evaluates expressions from left to right if
no parentheses are used, this is seldom an issue).

Additionally, thank to further specialized implementations of the >> opera-
tor, one can mix objects of chrono::ChFrameMoving and chrono::ChFrame

in the same expression. In the same way, it is possible to trasform simple 3D
vectors of class chrono::ChVector instead than entire frames, for example as
in:

vect 0 = vect 2 >> cs 21 >> cs 10;

This last example shows the reason why we preferred to define the T algebra
such that it concatenates kinematic transformations from left to right instead
than from right to left: in fact, in case no parentheses are used and there are
multiple operators with the same precedence, C++ compilers evaluate expres-
sions by taking couple of operands from left to right and transforming them into
temporary data, up to having a single result; hence when transforming simple
vectors, as in the example above, the compiler ends always with a sequence of
vector-by-frame products that are quickly computed, whereas if we had chosen
an algebra where one has to write instead vect 0 = cs 10 * cs 21 * vect 2

(for example), the compiler would translate it into a sequence of frame-by-frame
products up to the last frame-by-vector product2. The result would be the same,

2For instance, using Denavit-Hartenberg matrices Ma,b transforming rotations and posi-
tions from a to b, one would rather write in this order: v0 = M1,0M2,1v2.

12

http://api.chrono.projectchrono.org/classchrono_1_1_ch_frame_moving.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_frame.html
http://api.chrono.projectchrono.org/classchrono_1_1_ch_vector.html


Chrono::Engine technical documentation

but the performance would be much poorer because frame-by-frame products
are much slower than frame-by-vector.

All classes are templated and metaprogrammed [1], they can work with
floating point in double or single precision.

We remark that we performed benchmarks to obtain the best trade-off be-
tween computational efficiency, ease of use and exploitation of OOP features [2].

Finally, we implemented serialization methods for all the classes discussed in
this paper, so they can be converted from transient to persistent data schemes,
and vice versa, in a platform independent way. This is useful for storing data
on disk or on networks.

Table 1: Mapping between Lie group operators and C++ operators
Operator C++ op. Example C++ primitive

c = b · a
c = Rab
c = Lba

* x ca = x ba * x cb x ca = x ba.Transform(x cb) Transform, R-to-L chain

c = a � b
c = Rab
c = Lba

>> x ca = x cb >> x ba x ca = x ba.Transform(x cb) Transform, L-to-R chain

c := c · a
c := Rac

*= x ca *= x cb x ca = x ca.Trasform(x cb) In-place transform
(append to end of chain)

c := c � a
c := Lac

>>= x ca >>= x cb x ca = x cb.Trasform(x ca) In-place transform
(prepend to root of chain)

a = b−1 ! x ab = !x ba x ab = x ba.Inverse() Inverse element

c = b−1 ∗ a % x ba = !x ca * x cb = x ca % x cb x ba = x ca.InvTransf(x cb) Fast inverse transformation,
R-to-L

c = a−1 � b < x ba = x ca >> !x cb = x ca << x cb x ba = x ca.InvTransf(x cb) Fast inverse transformation,
L-to-R

5. Validation of semantics

Having agreed that the second subscript of an element represents the frame to
whom the coordinates are expressed, when looking at the examples exposed in
these pages one can see that, in order to make sense from a kinematical point
of view, the subscripts of the elements in the expressions must be chained.

For instance, in χ3,(0) = χ3,(2) � χ2,(1) � χ1,(0) it can be seen that the two
operands share respectively the second subscript and the first subscript, and
the result has the remaining two subscripts, respectively the first of the first
operand, and the second of the second operand.

This fact could be exploited in a planned feature, that could be implemented
in future: automatic semantics validation that tells if the programmer is writing
transformations that make sense.

More in detail, one can point out set of rules about the subscripts like the
following:

• Right to left transformation:
χc,(a) = χb,(a) · χc,(b)
(the (b) subscript must match the b subscript, and the result gets the
remaining two subscripts c and (a), in reverse order).
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• Left to right transofrmation:
χc,(a) = χc,(b) � χb,(a)
(the (b) subscript must match the b subscript, and the result gets the
remaining two subscripts c and (a), in exact order).

• Inversion:
χb,(a) = χ−1

a,(b)

(the a and (b) subscripts are swapped to b and (a)).

Other rules for the semantics are summarized in Table 2 for easy reference,
along with a graphical representation of the subscripts rules.

To support this type of run-time validation, additional data could be added
to each chrono::ChFrameMoving object, representing the two subscripts. When
the >> operator or the ! operator are used, the above mentioned rules are
invoked and the correctness of the transformation is checked, so a warning, or
an assert, or an exception-throwing can signal the problem. The data for the
subscript can be a simple (unique) numeric identifier, or a mnemonic string,
although the latter option would be slower in execution.

We remark that, by using template metaprogramming, the validation of the
sequences of coordinate transformations could be also checked in compile-time,
instead of run-time, and this would mean that there is no overhead on the
execution time (although it is not as flexible, because objects cannot be reused
with different bases once they are created).

Such optional possibility of validating the syntax of expressions for kinematic
consistency is particularly useful for educational purposes.

Table 2: Semantics checking rules, for χorigin,base
Op. C++ syntax Semantics Check Outcome

· Res = Op1 * Op2 χ c , a = χ
b , a

* χ
c , b

Op2.base == Op1.origin Res.base = Op1.base
Res.origin = Op2.origin

� Res = Op1 >> Op2 χ c , a = χ
c , b

>> χ
b , a

Op1.base == Op2.origin Res.base = Op2.base
Res.origin = Op1.origin

· Res *= Op χ
b c , a

*= χ
c , b

Res.origin == Op.base Res.origin = Op.origin

� Res >>= Op χ
c , a b

>>= χ
b , a

Res.base == Op.base Res.base = Op.origin

χ−1 Res = !Op χ
a , b

= ! χ
b , a

Res.origin == Op.base
Res.base == Op.origin

Res.origin == Op.base
Res.base == Op.origin

6. Example

Figure 2 shows an example based on a 4-DOF industrial robot and a conveyor
belt, both simulated with our multibody software. One must compute the po-
sition, speed and acceleration of an item on a conveyor belt respect to the end
effector, assuming that position, speed and acceleration of the item (frame n.8)
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Figure 2: Example. Computing position, speed and acceleration of an item on
a conveyor belt, respect to an end effector

is known respect to the conveyor belt (frame n.7), and all frames of the parts of
the robot are known respect to the previous joint, up to the base (frame n.0).
By using the T algebra, one can obtain position, rotation, velocity, angular ve-
locity, acceleration, angular acceleration of frame n.8 respect to frame n.6 using
a single expression:

χ8,(6) =χ8,(7) � χ7,(0) � χ−1
1,(0) � χ

−1
2,(1) � χ

−1
3,(2) � χ

−1
4,(3) � χ

−1
5,(4) � χ

−1
6,(5)

Equivalently, one could write instead:

χ8,(6) =χ8,(7) � χ7,(0) � (χ6,(5) � χ5,(4) � χ4,(3) � χ3,(2) � χ2,(1) � χ1,(0))
−1

that is, by doing the product of two groups of factors, also:

χ8,(6) =χ8,(0) � χ−1
6,(0) = χ8,(0) � χ0,(6)

7. Conclusion

This paper discusses the T (T,�) algebra as a compact formal method to repre-
sent kinematic transformations in chains of moving frames. This formal frame-
work has been implemented in Chrono::Engine using object-oriented program-
ming and the operator-overloading capabilities of the C++ language.

For additional information look at the chrono::ChFrameMoving and
chrono::ChFrame classes.
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