
Chrono::Vehicle Tutorial

Chrono::Vehicle

• Chrono::Vehicle is a C++ middleware library for the modeling, simulation, and
visualization of wheeled and tracked ground vehicles

• Chrono::Vehicle is a Chrono module, consisting of two libraries:
• ChronoEngine_vehicle

• Defines the system and subsystem base classes
• Provides concrete, derived classes for instantiating templates from JSON specification files
• Provides miscellaneous utility classes and free functions for file I/O, Irrlicht vehicle visualization,

steering and speed controllers, vehicle and subsystem test rigs, etc.
• ChronoModels_vehicle

• Provides concrete classes for instantiating templates to model specific vehicle models

• Dependencies:
• Chrono::Engine main module (required)
• Chrono::Irrlicht and the Irrlicht library; Chrono::OpenGL and dependencies (optional)
• Chrono::FEA and Chrono::MKL (optional)

2

Code design – systems and subsystems

• Systems are the functional blocks that participate in a co-simulation framework:
• are isolated and separated
• respect a well-defined communication data flow
• can advance their state (dynamics) independently and asynchronously
• Examples: powertrain, tire, terrain, driver, vehicle

• (Vehicle) Subsystems are functional elements in a vehicle model
• have a particular functional role (the subsystem ‘type’)
• a subsystem type can have many different implementations
• Examples:

• suspension, steering, driveline, brake, wheel
• sprocket, idler, road-wheel, suspension, track shoe

3

Code design - templates

• Template-based modeling
(not in the C++ sense)

• In Chrono::Vehicle, templates are parameterized models that define a particular
implementation of a subsystem type:

• Define the basic Chrono modeling elements (bodies, joints, force elements, etc.)
• Impose the subsystem topology (connectivity)
• Define the template parameters
• Implement common functionality for the type of subsystem (e.g. ‘suspension’), particularized to

the specific template (e.g. ‘double-wishbone’)

4

Code design – class hierarchy

• Chrono::Vehicle encapsulates templates for systems and subsystems in polymorphic C++
classes:

• A base abstract class for the system/subsystem type (e.g. ChSuspension)
• A derived, still abstract class for the system/subsystem template (e.g. ChDoubleWishbone)
• Concrete class that particularize a given system/subsystem template (e.g. HMMWV_DoubleWishboneFront)

• Concrete classes:
• User-defined – a derived class that satisfies all virtual functions imposed by the inherited template class

• not part of the Chrono::Vehicle library
• several example concrete classes (in the models library) and demo programs are provided

• Generic – a derived class that satisfies all required virtual functions using parameter data from a
specification file

• part of the Chrono::Vehicle library
• specification files use the JSON format

5

6

ChDriver

ChSuspensionTest

ChTerrain

ChTire

ChVehicle

ChPowertrain

ChSuspension

ChSteering

ChDriveline

ChBrake

ChWheel

ChDataDriver

ChIrrGuiDriverRigidTerrain

FlatTerrain
ChSimplePowertrain

ChShaftsPowertrain
ChRigidTire

ChLugreTire

ChPacejkaTire

ChDoubleWishbone

ChDoubleWishboneReduced

ChSolidAxle

ChMultiLink

ChPitmanArm

ChRackPinion

ChShaftsDriveline2WD

ChShaftsDriveline4WD

ChBrakeSimple

JSON file

data file

SimplePowertrain

ShaftsDriveline2WD

ShaftsDriveline4WD

SuspensionTest

Vehicle
DoubleWishbone

DoubleWishboneReduced

SolidAxle

MultiLink

RigidTire

LugreTire

JSON file

JSON file

JSON file

data file

JSON file
JSON file

JSON file

JSON file

JSON file

PitmanArm

RackPinion

BrakeSimple

Wheel

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

BASE CLASSES SYSTEM AND SUBSYSTEM TEMPLATES

Code organization

7

FOLDER CONTENT
data/vehicle JSON specification files, visualization meshes, contact meshes

src/chrono_vehicle Base system and subsystem class definitions (main Chrono::Vehicle library implementation)

src/chrono_models/vehicle Concrete system and subsystem class definitions for specific vehicles

src/chrono_thirdparty/rapidjson Clone of rapidjson – a JSON parser and generator library https://github.com/miloyip/rapidjson

src/demos/vehicle Various demo programs (main drivers)

Note: additional, more complex, Chrono::Vehicle programs are available in the GitHub repository
https://github.com/projectchrono/chrono-projects

https://github.com/miloyip/rapidjson
https://github.com/projectchrono/chrono-projects

Code organization – vehicle subsystems

8

FOLDER CONTENT

Abstract base class definitions for systems and subsystems (ChVehicle, ChChassis, ChPowertrain, etc.)

chassis Class definitions for chassis subsystem templates; concrete JSON-based implementations

driver Driver system class definitions (ChDataDriver – file-based driver inputs; ChIrrGuiDriver – interactive driver inputs)

powertrain Class definitions for powertrain subsystem templates; concrete JSON-based implementations

terrain Terrain system class definitions (RigidTerrain, FlatTerrain)

tracked_vehicle Subsystems for tracked vehicles

wheeled_vehicle Subsystems for wheeled vehicles

utils Various utility classes (controllers, vehicle visualization wrappers, etc.)

Code organization – wheeled vehicle subsystems

9

FOLDER CONTENT

Abstract base class definitions for systems and subsystems (ChWheeledVehicle, ChSuspension, ChTire, etc.)

antirollbar Class definitions for antiroll bar templates; concrete JSON-based implementations

brake Class definitions for brake subsystem templates; concrete JSON-based implementations

driveline Class definitions for driveline subsystem templates; concrete JSON-based implementations

steering Class definitions for steering subsystem templates; concrete JSON-based implementations

suspension Class definitions for suspension subsystem templates; concrete JSON-based implementations

tire Class definitions for tire system templates; concrete JSON-based implementations

vehicle Concrete implementation of a JSON-based wheeled vehicle system template

wheel Concrete implementation of a JSON-based wheel subsystem template

utils Various utility classes (wheeled vehicle visualization wrappers, interactive driver, suspension test rig)

Code organization – tracked vehicle subsystems

10

FOLDER CONTENT

Abstract base class definitions for systems and subsystems (ChTrackedVehicle, ChSprocket, ChIdler, etc.)

brake Class definitions for brake subsystem templates; concrete JSON-based implementations

driveline Class definitions for driveline subsystem templates; concrete JSON-based implementations

idler Class definitions for idler subsystem templates (with tensioner); concrete JSON-based implementations

road_wheel Class definitions for road-wheel subsystem templates; concrete JSON-based implementations

sprocket Class definitions for sprocket system templates; concrete JSON-based implementations

suspension Class definitions for suspension assembly system templates; concrete JSON-based implementations

track_assembly Class definitions for track assembly system templates; concrete JSON-based implementations

track_shoe Class definitions for track-shoe system templates; concrete JSON-based implementations

vehicle Concrete implementation of a JSON-based tracked vehicle subsystem template

utils Various utility classes (tracked vehicle visualization wrappers, interactive driver, track test rig)

Code organization – models

11

FOLDER CONTENT

src/chrono_vehicle/ ChSubsysDefs.h miscellaneous enums for model definition and creation

src/chrono_models/generic Concrete implementations of system and subsystem classes for a generic vehicle

src/chrono_models/hmmwv Concrete implementations of system and subsystem classes for a HMMWV

src/chrono_models/m113 Driver program for simulating a vehicle completely defined through JSON specification files

data/vehicle renderZ.pov a generic POV-Ray script for frame rendering

Code organization – demos

12

FOLDER CONTENT

demo_VEH_Articulated Articulated wheeled vehicle (with trailer)

demo_VEH_DeformableSoil Rigid wheel on SCM soil

demo_VEH_HMMWV HMMWV vehicle (full double-wishbone suspension)

demo_VEH_HMMWV_DefSoil HMMWV vehicle on SCM soil

demo_VEH_HMMWV9 HMMWV vehicle (reduced double-wishbone suspension)

demo_VEH_SteeringControler Demonstration of PID steering and speed controllers (double-lane change)

demo_VEH_SuspensionTestRig Suspension test rig defined through a JSON specification file

demo_VEH_WheeledGeneric Generic wheeled vehicle (test bed for various templates)

demo_VEH_WheeledJSON Vehicle completely defined through JSON specification files

FOLDER CONTENT

demo_VEH_M113 M113 tracked vehicle on rigid terrain

demo_VEH_M113_DefSoil M113 tracked vehicle on SCM soil

demo_VEH_M113_Parallel M113 tracked vehicle with Chrono::Parallel

Code organization – test programs

13

FOLDER CONTENT

test_VEH_HMMWV_ANCFTire HMMWV vehicle with deformable ANCF tires

test_VEH_HMMWV_Cosimulation MPI co-simulation framework for vehicle with deformable tires on granular terrain

test_VEH_tirePacejka test program for Pacjeka tire implementation

test_VEH_tireRig tire test rig

test_VEH_tireRig_Cosimulation MPI co-simulation framework for single deformable tire on granular terrain

FOLDER CONTENT

test_VEH_sprocketProfile test for custom sprocket-track shoe contact processing

Available in the GitHub repository https://github.com/projectchrono/chrono-projects

https://github.com/projectchrono/chrono-projects

Simulation
Inter-system communication
Skeleton of the simulation loop

14

Data flow (wheeled vehicles)

15

VEHICLE

DRIVER POWERTRAIN

TIRES

TERRAIN

Height
Normal

Forces and moments on wheel bodies

Wheel states

Driveshaft
speed

Driveshaft
torque

Throttle input

Steering input
Braking input

Data flow (tracked vehicles)

16

VEHICLE

DRIVER POWERTRAIN

TERRAIN

Forces and moments on track shoe bodies

Track shoe states

Driveshaft
speed

Driveshaft
torque

Throttle input

Steering input
Braking input

Simulation loop

17

Create and initialize systems

1. Get system outputs

2. Synchronize systems

3. Advance systems

𝑇𝑇 = 𝑇𝑇0

𝑇𝑇 = 𝑇𝑇 + ∆𝑇𝑇

• Framework: co-simulation with explicit coupling
• Systems advance between communication points

asynchronously and at independent rates
• Between two successive communication points,

each system extrapolates data from other systems

1. Get system outputs

18

// Collect output data from modules (for inter-module communication)
throttle_input = driver.GetThrottle();
steering_input = driver.GetSteering();
braking_input = driver.GetBraking();
powertrain_torque = powertrain.GetOutputTorque();
driveshaft_speed = vehicle.GetDriveshaftSpeed();
for (int i = 0; i < num_wheels; i++) {

tire_forces[i] = tires[i]->GetTireForce();
wheel_states[i] = vehicle.GetWheelState(i);

}

• Outputs from each system are obtained from accessor methods (virtual functions
declared by the corresponding base class)

2. Synchronize systems

19

// Update modules (process inputs from other modules)
time = vehicle.GetChTime();
driver.Synchronize(time);
powertrain.Synchronize(time, throttle_input, driveshaft_speed);
vehicle.Synchronize(time, steering_input, braking_input, powertrain_torque, tire_forces);
terrain.Synchronize(time);
for (int i = 0; i < num_wheels; i++)

tires[i]->Synchronize(time, wheel_states[i], terrain);

• Each system base class declares a virtual function Update() with a signature appropriate
for the particular type of system

3. Advance systems

20

// Advance simulation for one timestep for all modules
double step = realtime_timer.SuggestSimulationStep(step_size);
driver.Advance(step);
powertrain.Advance(step);
vehicle.Advance(step);
terrain.Advance(step);
for (int i = 0; i < num_wheels; i++)

tires[i]->Advance(step);

• Each system base class declares a virtual function Advance() with a single parameter,
the time interval between two communication points (∆𝑇𝑇)

• A particular system may take as many intermediate steps (constant or variable step-
size) as needed to advance the state of the system by ∆𝑇𝑇. If the system has no internal
dynamics, this function can be a no-op.

JavaScript Object Notation

21

What is JSON?

• JavaScript Object Notation
• JSON is syntax for storing and exchanging text information. Much like XML.
• JSON is smaller than XML, faster and easier to parse.
• JSON:

• JSON is a lightweight text-data interchange format
• JSON is language-independent (the “JavaScript” in its name is misleading)
• JSON is "self-describing" and easy to understand (that’s why it doesn’t even provide for

comments!)

• Defined in RFC 4627
• http://json.org/ has more information

22

http://tools.ietf.org/html/rfc4627
http://json.org/

Data types and syntax

• JSON’s basic types are:
• Number: usually double precision floating-point
• String: double-quoted
• Boolean: true or false
• Array: ordered sequence of values, comma-separated, enclosed in square brackets ‘[‘ and ‘]’
• Object: unordered collection of key:value pairs, comma-separated, enclosed in curly braces

‘{‘ and ‘}’
• null: empty

• Structural characters: [] { } : ,
• White spaces have no semantics around the structural characters

23

Very simple grammar

24

Example

25

{
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": 10021

},
"phoneNumbers": [

{
"type": "home",
"number": "212 555-1234“,
“extension": 307

},
{

"type": "fax",
"number": "646 555-4567"

}
]

}

key : value pair

array

object

string

numberkey : value pair

Keys
Values
Structural characters

RapidJSON

• Copyright (c) 2011-2014 Milo Yip (miloyip@gmail.com)
• RapidJSON is a JSON parser and generator for C++. It was inspired by RapidXml
• Available on GitHub: https://github.com/miloyip/rapidjson/
• Documentation: http://miloyip.github.io/rapidjson/
• RapidJSON is a header-only C++ library.

• The main RapidJSON headers are bundled in the chrono-T project

• NOTE: recently updated to latest RapidJSON version (1.1.0 – August 2016) which provides
support for relaxed JSON syntax (support for single-line and multi-line C++-style
comments)

26

mailto:miloyip@gmail.com
http://rapidxml.sourceforge.net/
https://github.com/miloyip/rapidjson/
http://miloyip.github.io/rapidjson/

Vehicle system
Chassis subsystem

27

Data flow

28

TERRAIN

VEHICLE

DRIVER POWERTRAIN

TIRES

Forces and moments on wheel bodies

Wheel states

Driveshaft
speed

Driveshaft
torque

Throttle input

Steering input
Braking input

VEHICLE

DRIVER POWERTRAIN

TERRAIN

Forces and moments on track shoe bodies

Track shoe states

Driveshaft
speed

Driveshaft
torque

Throttle input

Steering input
Braking input

Wheeled vehicles Tracked vehicles

Vehicle ISO reference frames

29

(XYZ) – chassis reference frame
(XYZ) – suspension reference frame
(XYZ) – steering reference frameY

X

Z

Y
X

Z

Y
X

Z

Z

X
Y

FRONT

REAR

RIGHT

LEFT

𝐎𝐎𝟐𝟐′′

𝐎𝐎𝟏𝟏

𝐎𝐎𝟐𝟐′

𝐎𝐎𝟑𝟑

ChVehicle base class

• A ChVehicle has:

• NOTE: ChVehicle is an abstract base class with protected constructors.
• Only derived classes (ChWheeledVehicle and ChTrackedVehicle) can be instantiated

30

/// Base class for chrono vehicle systems.
/// This class provides the interface between the vehicle system and other
/// systems (tires, driver, etc.)
class CH_VEHICLE_API ChVehicle

ChSystem* m_system; ///< pointer to the Chrono system
std::shared_ptr<ChChassis> m_chassis; ///< handle to the chassis subsystem

bool m_ownsSystem; ///< true if system created at construction
double m_stepsize; ///< integration step-size for the vehicle system

ChVehicle base class accessors

• Deferring to its constituent subsystems as needed, a ChVehicle provides accessors
for:

• Underlying ChSystem
• Handle to the vehicle chassis
• Chassis state (reference frame and COM)
• Angular speed of the vehicle driveshaft (connection to powertrain)

• A ChVehicle intermediates communication between other systems (e.g.,
powertrain, driver, etc.) and constituent subsystems (e.g., suspensions, brakes,
etc.)

31

ChVehicle base class virtual functions

• Initialize the vehicle at a specified position and orientation

• Advance the state of the vehicle system to the next communication time

32

/// Advance the state of this vehicle by the specified time step.
virtual void Advance(double step);

/// Initialize this vehicle at the specified global location and orientation.
virtual void Initialize(const ChCoordsys<>& chassisPos ///< [in] initial global position and orientation

double chassisFwdVel = 0 ///< [in] initial chassis forward velocity
) = 0;

/// Get a handle to the vehicle's driveshaft body.
virtual std::shared_ptr<ChShaft> GetDriveshaft() const = 0;

/// Get the angular speed of the driveshaft.
/// This function provides the interface between a vehicle system and a
/// powertrain system.
virtual double GetDriveshaftSpeed() const = 0;

ChChassis base class

• A ChChassis is a ChPart:

• A ChChassis has:

33

/// Base class for the chassis vehicle subsystem.
class CH_VEHICLE_API ChChassis : public ChPart

std::shared_ptr<ChBodyAuxRef> m_body; ///< handle to the chassis body
bool m_fixed; ///< is the chassis body fixed to ground?

ChChassis base class accessors

• A ChChassis provides accessors for:
• Chassis mass and inertia properties
• Chassis state (reference frame and COM)
• Vehicle speed (reference frame and COM)
• Driver position (local and absolute)
• Absolute acceleration of a point specified in local reference frame

• Any ChVehicle has a ChChassis

34

ChChassis base class virtual functions
• Specify mass and inertia properties of chassis body

• Specify local position and orientation of driver

• Initialize chassis within specified system, at given position and forward velocity

35

/// Get the chassis mass.
virtual double GetMass() const = 0;

/// Get the moments of inertia of the chassis body.
virtual const ChVector<>& GetInertia() const = 0;

/// Get the location of the center of mass in the chassis frame.
virtual const ChVector<>& GetLocalPosCOM() const = 0;

/// Get the local driver position and orientation.
/// This is a coordinate system relative to the chassis reference frame.
virtual ChCoordsys<> GetLocalDriverCoordsys() const = 0;

/// Initialize the chassis at the specified global position and orientation.
virtual void Initialize(ChSystem* system, ///< [in] containing system

const ChCoordsys<>& chassisPos, ///< [in] absolute chassis position
double chassisFwdVel ///< [in] initial chassis forward velocity
);

JSON specification file for a chassis

36

Offset of the chassis COM with respect to the
chassis reference frame.

Chassis moments of inertia with respect to the
chassis centroidal frame.

System type (string)

Template type (string){
"Name": "HMMWV chassis",
"Type": "Chassis",
"Template": "RigidChassis",

"Mass": 2086.52,
"COM": [0.056, 0, 0.523],
"Inertia": [1078.52, 2955.66, 3570.20],

"Driver Position":
{

"Location": [0, 0.5, 1.2],
"Orientation": [1, 0, 0, 0]

},

"Visualization":
{

"Mesh Filename": "hmmwv/hmmwv_chassis.obj",
"Mesh Name": "hmmwv_chassis_POV_geom"

}
}

Name of a Waveform OBJ file

Name of a PovRay input file (mesh_name.inp)
which defines a PovRay object (mesh_name)

Position and orientation of driver with respect to
the chassis reference frame.

Terrain Models

37

Data flow

38

VEHICLE

DRIVER POWERTRAIN

TIRES

TERRAIN

Height
Normal

DRIVER POWERTRAIN

VEHICLE TERRAIN

Forces and moments on track shoe bodies

Track shoe states

Wheeled vehicles Tracked vehicles

ChTerrain base class

• Defines the common interface for any terrain system
• All classes defining a particular terrain model inherit from ChTerrain

39

///
/// Base class for a terrain system.
///
class CH_VEHICLE_API ChTerrain

ChTerrain base class virtual methods

• Synchronize() and Advance() – common to all subsystems
• Typically not used (overridden) for non-deformable terrains

• Return terrain height and normal direction

40

/// Get the terrain height at the specified (x,y) location.
virtual double GetHeight(double x, double y) const = 0;

/// Get the terrain normal at the specified (x,y) location.
virtual ChVector<> GetNormal(double x, double y) const = 0;

Rigid terrain: RigidTerrain class

• RigidTerrain is a concrete class
• The terrain is modeled as a rigid body (ground) with an attached contact shape modeled as:

• A box or multiple side-by-side boxes (tiled)
• A triangular mesh (provided as a Wavefront OBJ file)
• A height-map (provided as a gray-scale BMP image)

• A RigidTerrain object can be constructed:
• Programatically (see demo_VEH_HMMWV.cpp)
• From a JSON specification file

41

/// Rigid terrain model.
/// This class implements a terrain modeled as a rigid shape which can interact
/// through contact and friction with any other bodies whose contact flag is
/// enabled. In particular, this type of terrain can be used in conjunction with
/// a ChRigidTire.
class CH_VEHICLE_API RigidTerrain : public ChTerrain

RigidTerrain initialization functions

42

/// Initialize the terrain system (flat).
/// This version uses a rigid box of specified dimensions and with specified
/// material properties. If tiled = true, multiple side-by-side boxes are used.
void Initialize(double height, ///< [in] terrain height

double sizeX, ///< [in] terrain dimension in the X direction
double sizeY, ///< [in] terrain dimension in the Y direction
bool tiled = false, ///< [in] terrain created from multiple tiled boxes
double max_tile_size = 1 ///< [in] maximum tile size
);

/// Initialize the terrain system (mesh).
/// this version uses the specified mesh, for both visualization and contact.
void Initialize(const std::string& mesh_file, ///< [in] filename of the input mesh (OBJ)

const std::string& mesh_name, ///< [in] name of the mesh asset
double sweep_sphere_radius = 0 ///< [in] radius of sweep sphere
);

/// Initialize the terrain system (height map).
/// This version uses the specified BMP file as a height map to create a mesh for
/// both contact and visualization.
void Initialize(const std::string& heightmap_file, ///< [in] filename for the height map (BMP)

const std::string& mesh_name, ///< [in] name of the mesh asset
double sizeX, ///< [in] terrain dimension in the X direction
double sizeY, ///< [in] terrain dimension in the Y direction
double hMin, ///< [in] minimum height (black level)
double hMax ///< [in] maximum height (white level)
);

JSON specification file for RigidTerrain (mesh)

43

{
"Name": "Rigid plane",
"Type": "Terrain",
"Template": "RigidTerrain",

"Contact Material":
{

"Coefficient of Friction": 0.9,
"Coefficient of Restitution": 0.01,

"Properties": {
"Young Modulus": 2e7,
"Poisson Ratio": 0.3

},

"Coefficients": {
"Normal Stiffness": 2e5,
"Normal Damping": 40.0,
"Tangential Stiffness": 2e5,
"Tangential Damping": 20.0

}
},

"Geometry":
{

"Mesh Filename": "terrain/meshes/test.obj",
"Mesh Name": "terrain_test_POV_geom"

},

"Visualization":
{

"Color": [0.5, 0.5, 0.8],
"Texture File": "terrain/textures/dirt.jpg",
"Texture Scaling": [200, 200]

}
}

JSON specification file for RigidTerrain (height-map)

44

{
"Name": "Rigid plane",
"Type": "Terrain",
"Template": "RigidTerrain",

"Contact Material":
{

"Coefficient of Friction": 0.9,
"Coefficient of Restitution": 0.01,

"Properties": {
"Young Modulus": 2e7,
"Poisson Ratio": 0.3

},

"Coefficients": {
"Normal Stiffness": 2e5,
"Normal Damping": 40.0,
"Tangential Stiffness": 2e5,
"Tangential Damping": 20.0

}
},

"Geometry":
{

"Height Map Filename": "terrain/height_maps/test64.bmp",
"Mesh Name": "terrain_test64_POV_geom",
"Size": [128, 128],
"Height Range": [0, 4]

},

"Visualization":
{

"Color": [1.0, 1.0, 1.0],
"Texture File": "terrain/textures/grass.jpg",
"Texture Scaling": [16, 16]

}
}

SCM terrain: DeformableTerrain class

• DeformableTerrain is a concrete class
• The terrain is modeled using a mesh

• The deformation of the mesh is along vertical direction only:
• The initial undeformed mesh can be created as:

• A regular tiled mesh (filling a flat rectangle)
• A triangular mesh (provided as a Wavefront OBJ file)
• A height-map (provided as a gray-scale BMP image)

• A RigidTerrain object can be constructed programmatically (see demo_VEH_DeformableSoil.cpp)

• Based on the SCM Soil Contact Model [Krenn & Hirzinger (DLR), 2009]

45

/// Deformable terrain model.
/// This class implements a terrain with variable heightmap. Unlike RigidTerrain, the vertical
/// coordinates of this terrain mesh can be deformed because of interaction with ground vehicles.
class CH_VEHICLE_API DeformableTerrain : public ChTerrain

DeformableTerrain: Chrono SCM Soil Contact Model

• The SCM model draws on the semi-empirical Bekker-Wong theory
• Pressure p related to sinkage z:

• Parameters: Kϕ Kc n, b as in Bekker-Wong
• Kc has negligible impact

• Tangential stress t given by Janosi-Hanamoto:
t = tmax (1- e –j/k)
tmax = c + p tan(ϕ)

• j is accumulated shear
• Parameters: c cohesion, ϕ internal friction angle (Mohr theory), k Janosi parameter

46

z

p

t
j

DeformableTerrain: Chrono SCM Soil Contact Model
customization

• The mesh can be automatically refined
• Not limited to regular quadrilateral grids as in

original SCM
• Parameter: max. triangle size s

• Heuristic build-up of material at the
boundary of the footprint

• use a topological smoothing operator
• Parameter: ϕs slope of rut and built-up material
• ϕs can be atan(µs) with µs is internal friction
• Parameter: v percentual of material being displaced

(100% means isochoric material)
• Limitation: it cannot really simulate horizontal

bulldozing effects like in a bulldozer blade

47

ϕs

DeformableTerrain initialization functions

48

/// Initialize the terrain system (flat).
/// This version creates a flat array of points.
void Initialize(double height, ///< [in] terrain height

double sizeX, ///< [in] terrain dimension in the X direction
double sizeY, ///< [in] terrain dimension in the Y direction
int divX, ///< [in] number of divisions in the X direction
int divY ///< [in] number of divisions in the Y direction
);

/// Initialize the terrain system (mesh).
/// The initial undeformed mesh is provided via a Wavefront .obj file.
void Initialize(const std::string& mesh_file ///< [in] filename of the input mesh (.OBJ file in Wavefront format)

);

/// Initialize the terrain system (height map).
/// The initial undeformed mesh is provided via the specified BMP file as a height map
void Initialize(const std::string& heightmap_file, ///< [in] filename for the height map (BMP)

const std::string& mesh_name, ///< [in] name of the mesh asset
double sizeX, ///< [in] terrain dimension in the X direction
double sizeY, ///< [in] terrain dimension in the Y direction
double hMin, ///< [in] minimum height (black level)
double hMax ///< [in] maximum height (white level)
);

DeformableTerrain : example

49

vehicle::DeformableTerrain mterrain(&my_system);

// Optionally, displace/tilt/rotate the terrain reference plane:
mterrain.SetPlane(ChCoordsys<>(ChVector<>(0, 0, 0.5)));

// Initialize the geometry of the soil: use a regular grid:
mterrain.Initialize(0.2,1.5,5,20,60);

// Set the soil terramechanical parameters:
mterrain.SetSoilParametersSCM(1.2e6, // Bekker Kphi

0, // Bekker Kc
1.1, // Bekker n exponent
0, // Mohr cohesive limit (Pa)
30, // Mohr friction limit (degrees)
0.01,// Janosi shear coefficient (m)
5e7 // Elastic stiffness (Pa/m), before plastic yeld, must be > Kphi
);

mterrain.SetBulldozingFlow(true); // inflate soil at the border of the rut
mterrain.SetBulldozingParameters(55, // slope of erosion at the border of the rut

0.8, // displaced material vs downward pressed material.
5, // number of erosion refinements per timestep
10); // number of concentric vertex selections subject to erosion

// Turn on the automatic level of detail refinement
mterrain.SetAutomaticRefinement(true);
mterrain.SetAutomaticRefinementResolution(0.08);

FEA soil: FEADeformableTerrain class

50

/// FEA Deformable terrain model.
/// This class implements a terrain made up of isoparametric finite elements. It features
/// Drucker-Prager plasticity and capped Drucker-Prager plasticity.
class CH_VEHICLE_API FEADeformableTerrain : public ChTerrain {

• FEADeformableTerrain is a concrete class
• Provides an easy way to construct a box of brick9 elements using a Drucker-Prager plasticity

formulation for vehicle/soil interaction

• The terrain is modeled as a constrained box (sides and bottom)
• Its contact shape may be modeled as a triangular mesh or a node cloud
• Dimensions and material properties are passed to the initialize method

• An FEADeformableTerrain object can be constructed:
• In the driver program, i.e. coding (see test_VEH_tireRig.cpp)
• To be developed: JSON specification file

FEA Soil – Chrono implementation

51

Implementation of this class includes

• Discretization of a box (terrain) into a user-prescribed number of brick9 elements
• Creation of corresponding nodes and elements

• Assignment of material properties to brick elements, including: density, modulus of elasticity,
Poisson ratio, yield stress, hardening slope, dilatancy angle, and friction angle.

• Addition of assets for Irrlicht visualization

ANCF tire on a brick9, plastic FEA mesh of
100x20x4 elements

FEADeformableTerrain initialization functions

52

/// Set the properties of the Drucker-Prager FEA soil.
void SetSoilParametersFEA(double rho, ///< [in] Soil density

double Emod, ///< [in] Soil modulus of elasticity
double nu, ///< [in] Soil Poisson ratio
double yield_stress, ///< [in] Soil yield stress, for plasticity
double hardening_slope, ///< [in] Soil hardening slope, for plasticity
double friction_angle, ///< [in] Soil internal friction angle
double dilatancy_angle ///< [in] Soil dilatancy angle
);

/// Initialize the terrain system (flat).
/// This version creates a flat array of points.
void Initialize(

const ChVector<>& start_point, ///< [in] Base point to build terrain box
const ChVector<>& terrain_dimension, ///< [in] terrain dimensions in the 3 directions
const ChVector<int>& terrain_discretization); ///< [in] Number of finite elements in the 3 directions

Driver Models

53

Data flow

54

VEHICLE

POWERTRAIN

TIRES

TERRAINDRIVER
Throttle input

Steering input
Braking input

VEHICLE

POWERTRAIN

TERRAIN

DRIVER
Throttle input

Steering input
Braking input

Wheeled vehicles Tracked vehicles

ChDriver base class

• Defines the common interface for any driver system
• A driver system can be open-loop or closed-loop (controller)

• All classes defining a particular driver model inherit from ChDriver

55

///
/// Base class for a vehicle driver system.
/// A driver system must be able to report the current values of the inputs
/// (throttle, steering, braking). A concrete driver class must set the member
/// variables m_throttle, m_steering, and m_braking.
///
class CH_VEHICLE_API ChDriver

ChDriver base class members and functions

• A ChDriver has:

• ChDriver provides accessors for driver inputs (steering, throttle, and braking) and
functions to record them in a file:

56

ChVehicle& m_vehicle; ///< reference to associated vehicle
double m_throttle; ///< current value of throttle input
double m_steering; ///< current value of steering input
double m_braking; ///< current value of braking input

/// Initialize output file for recording driver inputs.
bool LogInit(const std::string& filename);

/// Record the current driver inputs to the log file.
bool Log(double time);

ChDriver base class virtual methods

• Synchronize the driver at a communication time with data from other systems.
A concrete driver class may override the default no-op implementation (see ChDataDriver)

• Advance the state of the tire to the next communication point.
A concrete driver class may override the default no-op implementation (see ChIrrGuiDriver)

57

/// Update the state of this driver system at the current time.
virtual void Synchronize(double time) {}

/// Advance the state of this driver system by the specified time step.
virtual void Advance(double step) {}

ChIrrGuiDriver
• Concrete driver system for interactive vehicle simulation
• Implemented as an Irrlicht event receiver, it reads the keyboard (A,W,S,D) to generate driver

inputs

• Provides additional support for:
• Vehicle tracking camera
• Optional engine sound (using the IrrKlang library)
• Rendering of joints, springs
• Displaying vehicle stats

• Further specializations for wheeled and tracked vehicles are provided

58

/// Interactive driver model using keyboard inputs.
/// Irrlicht-based GUI driver for the a vehicle. This class implements the
/// functionality required by its base ChDriver class using keyboard inputs.
/// As an Irrlicht event receiver, its OnEvent() callback is used to keep track
/// and update the current driver inputs. As such it does not need to override
/// the default no-op Advance() virtual method.
class CH_VEHICLE_API ChIrrGuiDriver : public ChDriver, public irr::IEventReceiver

ChDataDriver

• Driver model based on inputs provided as time series:
• Programmatically – a vector of 4-tuples {time, steering, throttle, braking}
• From data file – ASCII file with a 4-tuple per line

• Time values must be unique
• If time values are not in ascending order, this must be indicated at construction
• Values at intermediate times are obtained through linear interpolation

59

/// Driver inputs from data file.
/// A driver model based on user inputs provided as time series. If provided as a
/// text file, each line in the file must contain 4 values:
/// time steering throttle braking
/// It is assumed that the time values are unique.
/// If the time values are not sorted, this must be specified at construction.
/// Driver inputs at intermediate times are obtained through linear interpolation.
class CH_VEHICLE_API ChDataDriver : public ChDriver

ChPathFollowerDriver

• Driver model based on inputs provided by two controllers:
• Path steering controller – controls steering to follow prescribed path
• Speed controller – controls throttle/brake to maintain constant speed

• Path specified as a piece-wise cubic Bezier curve
• ChBezierCurve provides support for interpolation and visualization

• PID controllers specified through their gains

60

/// Closed-loop path-follower driver model.
/// A driver model that uses a path steering controller and a speed controller.
/// The steering controller adjusts the steering input to follow the prescribed
/// path. The output from the speed controller is used to adjust throttle and
/// braking inputs in order to maintain the prescribed constant vehicle speed.
class CH_VEHICLE_API ChPathFollowerDriver : public ChDriver

ChBezierCurve

• Specified as a sequence of nodes and control points
• Match vectors for C1 continuity

• Specification of points in input file (node, in, out):
A A B
D C E
…
G F G

61

A B

C D E

F

G

ChPathFollowerDriver constructors

62

/// Construct using the specified Bezier curve.
ChPathFollowerDriver(ChVehicle& vehicle, ///< associated vehicle

ChBezierCurve* path, ///< Bezier curve with target path
const std::string& path_name, ///< name of the path curve
double target_speed, ///< constant target speed
bool isClosedPath = false ///< Treat the path as a closed loop
);

/// Construct using JSON specification files.
/// The two files must contain specification for the path-follower steering controller
/// and the constant-speed controller, respectively.
ChPathFollowerDriver(ChVehicle& vehicle, ///< associated vehicle

const std::string& steering_filename, ///< JSON file with steering controller specification
const std::string& speed_filename, ///< JSON file with speed controller specification
ChBezierCurve* path, ///< Bezier curve with target path
const std::string& path_name, ///< name of the path curve
double target_speed, ///< constant target speed
bool isClosedPath = false ///< Treat the path as a closed loop
);

Powertrain Models
Simple Powertrain
Shafts Powertrain

63

Data flow

64

TIRES

TERRAIN

VEHICLE

DRIVER POWERTRAIN

Driveshaft
speed

Driveshaft
torque

Throttle input

TERRAINVEHICLE

DRIVER POWERTRAIN

Driveshaft
speed

Driveshaft
torque

Throttle input

Wheeled vehicles Tracked vehicles

ShaftsPowertrain model

• Uses Chrono ChShaft elements

• Engine model based on speed-torque curves: 𝜏𝜏𝐸𝐸 = 𝜏𝜏𝐸𝐸 𝜔𝜔𝐸𝐸

• Torque converter model uses two curves:
- capacity factor curve: 𝐾𝐾 = 𝐾𝐾 𝑅𝑅𝜔𝜔
- torque ratio curve: 𝑅𝑅𝜏𝜏 = 𝑅𝑅𝜏𝜏 𝑅𝑅𝜔𝜔

where
𝑅𝑅𝜔𝜔 = ⁄𝜔𝜔𝑇𝑇 𝜔𝜔𝐼𝐼 speed ratio (turbine – impeller)
𝑅𝑅𝜏𝜏 = ⁄𝜏𝜏𝑇𝑇 𝜏𝜏𝐼𝐼 torque ratio (turbine – impeller)
𝐾𝐾 = ⁄𝜔𝜔𝐼𝐼 𝜏𝜏𝐼𝐼 capacity factor

• Transmission is a gear box, parameterized by a set of forward gear ratios and a
single reverse gear ratio

65

4WD POWERTRAIN
DATA FLOW

1D shaft element

3D rigid body

shaft – body connector

TC

Front shaft
2

Front shaft
1

Front
diff.

Rear shaft
1

Rear shaft
2

Central
diff.

Rear
diff.

Transmission
(Gear box)

Crank shaftEngineMotor
blockChassis

In shaft

Out shaftFront-right
axle

Front-left
axle

Rear-left
axle

Rear-right
axle

Conical gearConical gear

Front-right
spindle

Front-left
spindle

Rear-right
spindle

Rear-left
spindle

Angular speed Torque

66

TC

Front shaft
2

Front shaft
1

Front
diff.

Rear shaft
1

Rear shaft
2

Central
diff.

Rear
diff.

Transmission
(Gear box)

Crank shaftEngineMotor
blockChassis

In shaft

Out shaftFront-right
axle

Front-left
axle

Rear-left
axle

Rear-right
axle

Conical gearConical gear

Front-right
spindle

Front-left
spindle

Rear-right
spindle

Rear-left
spindle

powertrain subsystem

driveline subsystem

4WD POWERTRAIN
TEMPLATE PARTITIONING

67

Front shaft
2

Front shaft
1

Front
diff.

Rear shaft
1

Rear shaft
2

Central
diff.

Rear
diff.

Out shaftFront-right
axle

Front-left
axle

Rear-left
axle

Rear-right
axle

Conical gearConical gear

Front-right
spindle

Front-left
spindle

Rear-right
spindle

Rear-left
spindle

rotational inertia

template parameters

POWERTRAIN
TEMPLATE PARAMETERS

68

TCCrank shaftEngineMotor
blockChassis

In shaft

Torque map

Capacity factor map
Torque ratio map

Gear ratios
(forward + reverse)

Transmission
(Gear box)

JSON specification file for ShaftsPowertrain

69

Subsystem type (string)

Template type (string)

{
"Name": "Generic Shafts Powertrain",
"Type": "Powertrain",
"Template": "ShaftsPowertrain",

"Engine":
{

"Motor Block Inertia": 10.5,
"Crankshaft Inertia": 1.1,
"Torque Map": [

[-100 , 300],
[800 , 382],
[900 , 490],
[1000 , 579],
[1100 , 650],
[1200 , 706],
[1300 , 746],
[1400 , 774],
[1500 , 789],
[1600 , 793],
[1700 , 788],
[1800 , 774],
[1900 , 754],
[2000 , 728],
[2100 , 697],
[2200 , 664],
[2300 , 628],
[2400 , 593],
[2500 , 558],
[2700 ,-400]

],
"Losses Map": [

[-50 , 30],
[0 , 0],
[50 , -30],
[1000 , -50],
[2000 , -70],
[3000 , -90]

]
},

Speed – motor torque curve

Speed – resistive torque curve

JSON specification file for ShaftsPowertrain

70

Forward gear ratios (1st, 2nd, etc.)

Torque converter capacity factor curve
(capacity factor as function of speed ratio)

Torque converter torque ratio curve
(torque ratio as function of speed ratio)

"Transmission":
{

"Input Shaft Inertia": 0.3,
"Reverse Gear Ratio": -0.1,
"Forward Gear Ratios": [0.2, 0.4, 0.8]

},

"Torque Converter":
{

"Capacity Factor Map": [
[0.00 , 15.00],
[0.25 , 15.00],
[0.50 , 15.00],
[0.75 , 16.00],
[0.90 , 18.00],
[1.00 , 35.00]

],
"Torque Ratio Map": [

[0.00 , 2.00],
[0.25 , 1.80],
[0.50 , 1.50],
[0.75 , 1.15],
[1.00 , 1.00]

]
}

}

SimplePowertrain model

• Very simple model:
𝜔𝜔𝑚𝑚 = ⁄𝜔𝜔𝑠𝑠 𝑔𝑔
𝜏𝜏𝑚𝑚 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 � 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 � 1 − ⁄𝜔𝜔𝑚𝑚 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
𝜏𝜏𝑠𝑠 = ⁄𝜏𝜏𝑚𝑚 𝑔𝑔

• No torque converter, no transmission

71

JSON specification file for SimplePowertrain

72

{
"Name": "Generic Simplified Powertrain",
"Type": "Powertrain",
"Template": "SimplePowertrain",

"Forward Gear Ratio": 0.3,
"Reverse Gear Ratio": -0.3,
"Maximum Engine Torque": 272.0,
"Maximum Engine Speed": 2000

}

Subsystem type (string)

Template type (string)

Visualization
Runtime visualization with Irrlicht

73

Specifying visualization type

• Visualization type is controlled on a per-subsystem level
• Available settings: NONE, PRIMITIVES, MESH (if supported)
• ChVehicle and derived classes provide functions Set***VisualizationType which must be

called after vehicle initialization

• Base vehicle subsystem visualization:

74

/// Set visualization mode for the chassis subsystem.
void SetChassisVisualizationType(VisualizationType vis);

Specifying visualization type

• Wheeled vehicle subsystem visualization:

• Tracked vehicle subsystem visualization:

75

/// Set visualization type for the suspension subsystems.
/// This function should be called only after vehicle initialization.
void SetSuspensionVisualizationType(VisualizationType vis);

/// Set visualization type for the steering subsystems.
/// This function should be called only after vehicle initialization.
void SetSteeringVisualizationType(VisualizationType vis);

/// Set visualization type for the wheel subsystems.
/// This function should be called only after vehicle initialization.
void SetWheelVisualizationType(VisualizationType vis);

/// Set visualization type for the sprocket subsystem.
void SetSprocketVisualizationType(VisualizationType vis);

// Set visualization type for the idler subsystem.
void SetIdlerVisualizationType(VisualizationType vis);

/// Set visualization type for the suspension subsystems.
void SetRoadWheelAssemblyVisualizationType(VisualizationType vis);

/// Set visualization type for the track shoe subsystems.
void SetTrackShoeVisualizationType(VisualizationType vis);

76

77

Visualization
Post-processing with POV-Ray

78

79

Preparing output data files – WriteShapesPovray

• Call this function at each simulation frame that needs to be post-processed
• Outputs a Comma Separated Value (CSV) file with specified name
• File contains information for

• All bodies in the Chrono system (position and orientation)
• All visualization assets (position, orientation, type, parameters)
• Selected types of joints

80

// Write CSV output file for PovRay.
// Each line contains information about one visualization asset shape, as
// follows:
// index, x, y, z, e0, e1, e2, e3, type, geometry
// where 'geometry' depends on 'type' (an enum).
CHApi
void WriteShapesPovray(ChSystem* system,

const std::string& filename,
bool body_info = true,
const std::string& delim = ",");

Preparing output data files – WriteMeshPovray

• Call this function once to generate a PovRay input file from a specified Waveform OBJ
mesh file

• Quick and dirty alternative to using a more powerful tool (e.g., PoseRay –
https://sites.google.com/site/poseray/)

81

// Write the triangular mesh from the specified OBJ file as a macro in a PovRay
// include file. The output file will be "[out_dir]/[mesh_name].inc". The mesh
// vertices will be tramsformed to the frame with specified offset and
// orientation.
CHApi
void WriteMeshPovray(const std::string& obj_filename,

const std::string& mesh_name,
const std::string& out_dir,
const ChColor& color = ChColor(0.4f, 0.4f, 0.4f),
const ChVector<>& pos = ChVector<>(0, 0, 0),
const ChQuaternion<>& rot = ChQuaternion<>(1, 0, 0, 0));

https://sites.google.com/site/poseray/

Creating PovRay images – renderZ.pov script

• Generic script for (batch) processing of output files in the format generated by
WriteShapesPovray

• Assumes all data is expressed in a right-hand frame with Z up (and performs all required
transformations to PovRay’s Y-up left-handed frames)

• User controls:
• Render a single frame or a sequence of frames (batch processing)
• Turn on/off rendering of body and object (asset) reference frames
• Turn on/off rendering of objects (assets)
• Turn on/off rendering of static objects (assets of bodies fixed to ground)
• Turn on/off rendering of links (joints)
• Camera location and “look-at” point (with a few presets)
• Enable/disable shadows
• Optionally render environment (ground and sky)

82

83

84

	Chrono::Vehicle Tutorial
	Chrono::Vehicle
	Code design – systems and subsystems
	Code design - templates
	Code design – class hierarchy
	Slide Number 6
	Code organization
	Code organization – vehicle subsystems
	Code organization – wheeled vehicle subsystems
	Code organization – tracked vehicle subsystems
	Code organization – models
	Code organization – demos
	Code organization – test programs
	Simulation
	Data flow (wheeled vehicles)
	Data flow (tracked vehicles)
	Simulation loop
	1. Get system outputs
	2. Synchronize systems
	3. Advance systems
	Slide Number 21
	What is JSON?
	Data types and syntax
	Very simple grammar
	Example
	RapidJSON
	Vehicle system�Chassis subsystem
	Data flow
	Vehicle ISO reference frames
	ChVehicle base class
	ChVehicle base class accessors
	ChVehicle base class virtual functions
	ChChassis base class
	ChChassis base class accessors
	ChChassis base class virtual functions
	JSON specification file for a chassis
	Terrain Models
	Data flow
	ChTerrain base class
	ChTerrain base class virtual methods
	Rigid terrain: RigidTerrain class
	RigidTerrain initialization functions
	JSON specification file for RigidTerrain (mesh)
	JSON specification file for RigidTerrain (height-map)
	SCM terrain: DeformableTerrain class
	DeformableTerrain: Chrono SCM Soil Contact Model
	DeformableTerrain: Chrono SCM Soil Contact Model customization
	DeformableTerrain initialization functions
	DeformableTerrain : example
	FEA soil: FEADeformableTerrain class
	FEA Soil – Chrono implementation
	FEADeformableTerrain initialization functions
	Driver Models
	Data flow
	ChDriver base class
	ChDriver base class members and functions
	ChDriver base class virtual methods
	ChIrrGuiDriver
	ChDataDriver
	ChPathFollowerDriver
	ChBezierCurve
	ChPathFollowerDriver constructors
	Powertrain Models
	Data flow
	ShaftsPowertrain model
	Slide Number 66
	Slide Number 67
	Slide Number 68
	JSON specification file for ShaftsPowertrain
	JSON specification file for ShaftsPowertrain
	SimplePowertrain model
	JSON specification file for SimplePowertrain
	Visualization
	Specifying visualization type
	Specifying visualization type
	Slide Number 76
	Slide Number 77
	Visualization
	Slide Number 79
	Preparing output data files – WriteShapesPovray
	Preparing output data files – WriteMeshPovray
	Creating PovRay images – renderZ.pov script
	Slide Number 83
	Slide Number 84

