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Corotational Formulation

In a nutshell:

e Each finite element has a frame of reference associated with it
= This frame describes base rotations and translations —rigid body-style

e Based on linear finite elements —infinitesimal deformation

e The element frame of reference absorbs rigid body motion and allows defining
infinitesimal deformation with respect to the element

e We will analyze this formulation on a per-element basis, only a beam elem.
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Corotational Formulation

C? — Initial, undeformed configuration

CYR — Co-rotated element frame (rigid body motion)
X C' — Current, deformed configuration

e The motion of a node i of a beam element is defined by the position vector x; and a set of
quaternions p; of a reference frame.

e The vector p; captures the rigid body rotation and deformation rotation of the beam cross section
at node 7. The state of a system with n nodes is, therefore, s = [qj 'v]

® q— [$l:~ P1,L2, P2,..., T3, PS] S R(S-ﬁ—él)n and v = [Ula Wi, V2, W2, ..., V3, (.:9'3} < R(3+3)n.

Global coordinates
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Corotational Formulation

e When an element j moves, the position and rotation of the floating frame, (F), are updated.
The origin of (F) is placed at the element’s midpoint xp = 1/2 (xp — x4).

e The floating (shadow) frame’s longitudinal axis X is aligned with the vector xp — @ 4, whereas
the Y and Z axes are obtained via a Gram-Schmidt orthogonalization.

e The rotation matrix and unit quaternion of (F) will be denoted as Rp and pp, respectively.



S,
£ PROJECT
Z,CHRONO

T

Corotational Formulation
B,
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CU
z
Y
X Local displacements
e One can compute the local displacements of a node i as d; = &; — &;, = Ry (x;, —xp ) —

R} (x; — xF). where the bar over displacement quantities describes locality, and the subscript
0 refers to the initial configuration.

e The local rotation of the nodes can be obtained in terms of rotation matrices for nodes A and B

5 DT T . 5 DT T Infinitesimal
as RA - RF RA RAO &Ild R’B _ RFRB RBO rotations for elastic
Possible initial relative rotation between node and reference frame —forces_

e The local infinitesimal angles may be obtained as 0, =0, uy and O = Agup. We know that

a quaternion can be written as p = [cos(0/2),sin(0/2)u]. To compute the local rotation vectors,
. B - | v
O = 2arccos(R(pa)), ua = g57275(p4a) ;
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Corotational Formulation

Nodal quaternions can be used to describe linearized angles for the definition of local strains. A
unit quaternion (eg, e), where e = (e, 9, €3), may be written as

p=cos(0/2), msin(6/2)], (1)
with the rotation angle # being # = arccos (28(2) — 1)? and the vector defining the axis of rotation as
n = 2eep/sin . (2)

Note that Equations (1)-(2) link Euler parameters to Euler’s Rotation Theorem, which expresses any
three-dimensional rotation as a finite rotation about a single axis n. At this point, we can compute the
linearized angles as 0; = ;n;. For nodes A and B of a beam element, the vector of local deformations
is dioyy = [(_iA, 0,,dg, 93]. The local stiffness matrix, K'lgx'lg((_i), and the local internal force vector,
fi, = K(d), are then mapped onto the global frame of reference by introducing new matrices and
building projectors.
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Corotational Formulation

The dimensions of the stiffness matrix and internal force vector are depen-
dent upon the number of coordinates used to describe deformation and, there-
fore, they are dependent on the element. For the beam element described in
these notes, K is a 12-by-12 matrix, and d is a 12-by-1 vectors.
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Generalized Elastic Forces

The elastic forces are obtained, in the local (co-rotated) frame, using infinitesimal coordinates.

These forces need to be mapped into the global, generalized coordinates. Internal forces of an element,
defined as
fm — Kd

To establish the relation between the two sets of coordinates: Virtual work of internal forces
£7 5d 4+ fT 5d9 = fg; X5x + fg; p5p

1nu

, Jor =

: : L : 0 0
This transformation may be defined by a Jacobian in the following form [ 11] =Jcr [ x

00 op
ox  Op
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Generalized Elastic Forces

The Jacobian of the transformation allows to go from local coordinates to our global, generalized
coordinates

finx firl.ﬁ e
[f : ] :JgR [? J ] ~ fin — Jngin

in,p in,0

where the Jacobian has the form...

J = H P T
—~— —~— ~—~—
Rotation to in CR:From displacements/spin Global to

spin Jacobian CR rotator

to deformation displacements/spin

e We are not getting into more details
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Stiffness Matrix

The stiffness matrix looks like...

K=R, |P'H'KHP-F,,,G-G'F,P+P'LyP | R, (1)
Ka Kar Kap Kan

where the terms Kgp (rotational), Kgp (equilibrium projection), and Kgy (moment-correction)
capture geometric stiffness; Ky is the material stiffness.
The following notes apply to Chrono’s implementation:

e The term K¢y is not computed in the implementation because its influence was found to be
negligible

e K/ is a symmetric matrix for Euler-Bernoulli beams; however, the overall global stiffness
matrix K is non-symmetric due to the influence of geometric stiffness terms

e Under reasonable assumptions, the global stiffness matrix can be symmetrized without affecting
convergence of the Newton-Raphson method:

K = R, (PTA'KAP - F,,G — GTF! P)R]

x ?

ST 1 (F =
where Fyy = 2 (F,,, + F,).

10
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Generalized Loads in CRF

Since the coordinates of a system modeled using the co-rotational formulation are global translations
and rotations, the generalized force of a concentrated loads looks like that of a rigid body. But...

e For loads not applied at the nodes, shape function evaluation is necessary

e Pressure and volumetric loads also require numerical integration

11
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Procedure

e CRF assumes the use of finite element —small def.

e [ach node is characterized by translational and rotation coordinates
e Coordinates describe rigid body motion and deformation

e Small deformation is treated linearly

e Elastic forces must be mapped back into global coordinates

e Generalized stiffness matrices become “ugly” (e.g. see white papers on
projectchrono website)

12
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Summary

e Local deformation is linearized from global coordinates
e Deformation measures are infinitesimal
e If body deformation is not small, look for an alternative formulation

e We skipped definition of internal forces and stiffness matrices

13
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Summary

e The CRF divides the reference motion of the bodies into base and co-rotated. Strains and stresses
are computed as the configuration change between co-rotated and current.

e CRF captures well large translations, large rotations, and small elastic strains. Under certain
conditions, i.e. strains must remain small, the CRF can be extended to nonlinear materials
e.g. material constants depend upon current strain state. This extension is usually limited to
structural approaches (as opposed to continuum mechanics-based), that is, trusses, beams, shells,
and plates.

e The formulation is Lagrangian-based since the CRF tracks the motion of material points. For
instance, the motion of the A and B ends of a beam.

14



Other finite elements
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Reissner shells

e Reissner-Mindlin theory
e Kinematically-exact 6-field shell theory, drilling included ( Witkowski et al.)
* 6-field: displacement y and rotation T, with T(x,t) € SO(3)

yx,)=x+4u(x,t), T(x,t)=0Q(x,1)Tp(x)

'(l

tl'l

* Optimization
Morandini-Masarati corotational formulation: interpolation of T from node rotations respect to
average rotation

16
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The Reissner 6-field shell

/

\Nl N3 /
/

6 dofs per node

n E]

e Quaternions for rotations, incremental formulation / N4 m| )&
. M - i-l

* 4 Gauss points . P

ANS for shear lock

CLT preintegrated material laws for layered materials
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Animation
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