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ABSTRACT
A new method to design motion laws is proposed, featuring the ability of imposing constraints over sequences

of functions, each defined by parameters. User constraints may require, for example, continuity between segments,
acceleration or position at given time values, and so on. The optimal value for function parameters is obtained
applying a modified Newton-Lagrange process over a constrained optimization problem. The outer Newton loop
adopts a linear solver which exploits the sparsity of the coefficient matrix, hence allowing high computational
efficiency even in case of many constraints. The resulting method has been implemented into a custom software
for multibody simulation, thus providing a powerful yet expandable way to design motion laws for mechatronic
devices.
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1 INTRODUCTION

The development of automatic devices and robots
often entangles the cumbersome process of designing
the motion laws for the controlled degrees of freedom.

Many kinds of motion laws are currently adopted
for this purpose (polynomial, cycloidal, etc.), usually
joined into a sequence of multiple functions if
complex trajectories are required [1].

When dealing with long sequences of motion
laws, the many degrees of freedom offered by
the parameters of the function segments could
be subject to a variable number of user-defined
constraints: simplest cases can be solved immediately
by analytical methods, if constraints are as simple
as imposed continuity between segments or total
movement over a fixed time span.

However, dealing for example with more complex
constraints (such as imposing acceleration or position
at generic time values) requires a generic, non-
heuristic approach to the problem. Here we discuss
a method which can be used to impose arbitrary
constraints to the motion laws.

In order to define sequences of functions, we
adopted an object-oriented approach where each
function segment is an instance of a specific class.
Instancing and sequencing of functions can be done
at compile-time (with C++ language) or at runtime
(using Javascript interpreted language).

Finally, an interactive graphical user-interface has
been developed so that constraints over motion laws
can be placed easily.

2 THE PROBLEM

Let consider a motion law as a piecewise function of
the independent variable t, that is a y = f(t) function
f : t ∈ R

+ → y ∈ R.
Most often the shape of such function can be

defined by a finite set of parameters (for example the
position and weights of knots, in case f(t) is a spline),
whose value can be decided in order to achieve some
specific goal. Hence all n function parameters can be
collected into a q vector, with q ∈ Q, Q ⊂ R

n that is

q = {q1, q2, ..., qn}
T

. (1)

Note that in case of functions which depend on
w sub-functions, such as in the case of sequences
or operations between children functions, a vector of
design parameters can still be defined, as a collection
of the parameter vectors qT

Fi of the w children
functions:

q =
{
qT

F1,q
T
F2, ...,q

T
Fw

}T
. (2)

In general, we have a f : T ,Q → Y mapping:

y = f(t,q) f : t ∈ R,q ∈ R
n → y ∈ R. (3)
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Figure 1: Motion law with user-imposed constraints.
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Figure 2: A motion law made by a constrained sequence of basic
segments.

This f(t,q) function can be subject to m non-
linear constraints, each with mapping Ci : Q →
Ci, which can be collected into a compact vectorial
constraint:

C(q) = 0 C : q ∈ R
n → C(q) ∈ R

m, (4)

for C ∈ C. Different approaches for the solution of q

will be discussed heretoafter.

2.1 Constraints

Depending on the features required to the motion law
y = f(t), appropriate constraint equations can be
introduced in eq.4. For example, the function may
have specific values of y at given instants of time t,
as well as specific values of speed and acceleration,
not necessarily at once (Figure 1).

Also, in most complex situations, constraints
could put into relation either some parameters q
and function values (or derivative, or integrals), for
example one could require that the length of a function
segment ql is four times the derivative of f(t) at t = 2,
that is ql − 4∂y/∂t |t=2= 0, or one could require that
two values at t = 3,t = 6 are spaced 10[mm] on y,
that is y |t=3 −y |t=6 −10 = 0, and so on.

Following is a list of most useful constraints,
whose meaning in a context of motion design is self-
explaining.

• Prescribed value Ya at given Ta time instant:
y|Ta

− Ya = 0

• Prescribed n-th derivative Da at given Ta time
instant:
(∂ny/∂tn)|Ta

− Da = 0

• Prescribed integral Ia at given Ta time instant:
(
∫

ydt)|Ta
− Ia = 0

• Cn-continuity between segments:
(dny/dtn)|Ta+ − (dny/dtn)|Ta−

= 0.

• Relation between parameters:
r(qa, qb, ...) = 0

• Most generic constraint:
C(q) = 0

All the equations above can be written as Ci(q) =
0, and these can be collected in a vector of equations,
that is C(q) = 0 as needed in Equation 4.

2.2 Case of unique solution(s)

In the case m = n, where dim(C) − dim(Q) = 0,
nonlinear equation 4 can be solved for a root q ∈ Q.
This problem can be faced with the straightforward
application of a Newton-Raphson method, which
converges to a numerical approximation q̃ of the exact
root q after few iterations:

∆qi+1 = −

[
∂C(qi)

∂q

]
C(qi), (5)

qi+1 = qi + ∆qi+1 (6)

where [∂C/∂q] is the jacobian of C respect to
the q parameter vector, and we will write it [Cq]
heretofore.

Of course convergence of the method depends on
many factors, for example the initial guess q0 should
be not too far from the root, C(q) must be first-
order Fréchet differentiable in the surroundings of q,
jacobian should be semidefinite and well conditioned,
and so on.

However it often happens that the system has more
degrees of freedom than the applied constraints. This
is the case of m < n, that is dim(C) < dim(Q), and
poses a different challenge. This is the case which we
will deal with, in search of the highest generality.

2.3 Constrained minimization

Since an underconstrained problem leaves n − m
degrees of freedom, we can try to find the solution
which minimizes some useful function, for example
the least change from the initial state q0 given at the
beginning of the Newton Raphson process (this can be
an useful default behavior of the solver because each
time the user tweakes a constraint, he would like to
see the smallest change in other parts of the function
under inspection).



Otherwise, introducing more freedom of control
from the user point of view, the minimization could
search the least value of some user-defined function,
for example when one aims at least acceleration, least
jerk and so on [2].

In either cases, one ends with a constrained
minimization problem [3] of the type:

min |qF (q) (7)

C(q) = 0 (8)

where F : Q → F , F ⊂ R, Q ⊂ R
n is a generic

objective function which should be minimized, q ∈ Q
are the optimization variables, and C : Q → C are the
constraints.

The Lagrangian,

L(q, λ) := F (q) + λT C(q) (9)

can be used to convert the constrained optimiza-
tion problem into a system of nonlinear equations:

{
∂L/∂q

∂L/∂λ

}
(q, λ) = 0, (10)

{
∂F/∂q + [∂C/∂q]

T
λ

C(q)

}
= 0 (11)

Equation 11 can be written in the compact form
G(y) = 0, where G is the lagrangian gradient (a

nonlinear function of variables y =
{
qT , λT

}T
). The

solution of the nonlinear problem G(y) = 0 may
come from a Newton Raphson method, that is:

∆yi+1 = −

[
∂G(yi)

∂y

]
−1

G(yi), (12)

yi+1 = yi + ∆yi+1. (13)

The method may converge in few steps if a good
initial estimate is provided, but the solution of the
linear system in the step of equation 12 may be be
difficult [4], either for the huge dimension of the
jacobian matrix, either because such matrix may be ill
conditioned, either because some parts of the matrix
must be obtained by numerical differentiation, prone
to roundoff and truncation.

In fact the linear system for the Newton step
(equation 12) can be written as [K]∆yi+1 = −G(yi):

[
[W] [Cq]

T

[Cq] [0]

] {
∆qi+1

∆λi+1

}
=

{
−gi + [Cq]

T λi

−Ci

}
(14)

where the terms have the following meaning:

• [W] :=
[[

∂2F/∂q2 +
∑

j λj∂qqcj

]]

• [Cq] := [∂C/∂q]

• g := ∂F/∂q

The block-structured [K] matrix,

[K] =

[
[W] [Cq]

T

[Cq] [0]

]
(15)

often called KKT (Karush-Kuhn-Tucker) matrix, is
highly sparse, symmetric and indefinite. It may be
singular if constraints are ill conditioned, that is when
rank([Cq]) < dim(C), or when the Hessian block is
near singularity, that is when det[W] ≈ 0.

Let consider the following example. If one wants
the q solution which minimizes the objective function
F = 1

2
qT q, subject to constraints C, the hessian

becomes a simple diagonal matrix [I]. Also, the first
step of the Newton procedure turns into the following
system, for q0 = 0:
[

[I] [Cq]
T

[Cq] [0]

] {
∆qi+1

λi+1

}
=

{
0

−Ci

}
(16)

which can be solved symbolically, given [I] = [I]−1,
with these few steps:

∆q = [Cq]
T λ, (17)

[Cq][Cq]
T λ = −C, (18)

∆q = [Cq]
T

[
[Cq][Cq]

T
]
−1

− C. (19)

Then it is interesting to notice how, in this special
case, equation 19 gives the same result which could
be obtained with the application of a Moore-Penrose
pseudoinverse [Cq]

+
i = [Cq]

T
[
[Cq][Cq]

T
]
−1

.
However note that, in this case, the direct solution
of system 16 through a LU or Gauss method is
more favorable to the solution with the pseudoinverse,
because [K] is very sparse, while [Cq]

+ is smaller
but full. Indeed, special methods can solve the linear
system of equation 16 by exploiting the block-sparsity
of the [Cq] matrix, for example the decomposition
of [K] into a Bunch-Parlett [L][D][L]T form can be
very efficient in this circumstance [5], especially
when adopting custom algorithms for sparse matrices
factorization [6].

When equation 16 is used in all Newton steps,
keeping diagonal hessian [W] = [I] and always setting
gi = 0, it behave exactly as using the Moore-Penrose
pseudoniverse.

Otherwise, if gi is kept updated as gi = ∂F/∂q,
given objective

F =
1

2
[q − q0]

T [q − q0] (20)

we get:
[

[I] [Cq]
T

[Cq] [0]

] {
∆qi+1

λi+1

}
=

{
−qi + q0

−Ci

}
(21)
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Figure 3: Example of a complex function as a tree of basic building blocks.

whose meaning can be more intuitive: at the end
of the Newton loops, the new state will satisfy the
constraints, with the smallest change from the initial
guess q0. This is useful in an interactive context,
where an user may change the constraints on the
functions in successive steps, testing different design
solutions: each time a constraint is changed/added,
the last state is used as q0 and the Newton loop
with equation 21 is performed, hence providing a
new function whose shape is not too far from the last
before the tweaking.

3 IMPLEMENTATION

The above theory has been implemented by using the
C++ programming language, either in form of a stand-
alone library, either integrated into our multibody
simulation software [7].

3.1 Software design

Driven by a modular approach, the features of
our library allow the building of complex motion
laws starting from basic function objects (called
ChFunctions heretoafter), which can be subject to
operations (sequencing, multiplication, time warping,
integration, etc.) by linking them to other ChFunction
objects.

This building-block architecture means that a
complex function can be seen as an hierarchical tree
of simpler functions (Figure 3).

Also constraints are objects which can be linked to
functions as needed, without limits in number or type.

Instancing of functions and constraint objects (as
well as setting up their hierarchy) can be done at
C++ level, with compiled statements, or at scripting
level, using an interactive shell and the compiled
language Javascript (ECMA-262 specification, ISO-
16262 standard), as in Figure 4.

An interactive graphical user interface has been
implemented in our C++ multibody software, thus
allowing an intuitive creation and manipulation of
ChFunctions while designing the motion-laws of
robotic devices (Figure 5 and 6).

3.2 Function classes

The ChFunction base class implements the common
features of all inherited functions, for example
a default numerical differentiation is provided, to
get ∂ny/∂tn. Then, all inherited functions must
at least provide the y = y(t), but they could
also overload / override the base methods when
necessary, for example the ChFunction sine overrides
the default numerical differentiation because the
analytical derivative is known.

A partial view of the inheritance tree can be seen
in Figure 7. Among the many specialized classes,
we stress the importance of the ChFunction sequence
class, which is used to collect many sub-functions
(maybe other sequences too) into a sequence of
segments.

There are also functions which can modify other
functions, for example ChFunction op Fa of Fb can
be used to build functions of the fa(fb(t)) type.

Note that all functions must provide a method
which exposes their optimization parameters, that is
the vector of variables which can be collected into the
q vector of equation 2.

3.3 Constraint classes

All constraints are handled as C++ objects. Each
ChFunction can own an unlimited number of
constraints, as they are inserted in a linked list.

Each specialized constraint class must implement
the base methods which compute its C(q) residual,
to be used in equation 21 for the Newton Raphson
process.

4 EXAMPLES

4.1 Constant acceleration

Motion law ramps with constant acceleration (and
deceleration) are well known, being made of two
parabolic pieces, with durations tv and ts − tv , each
with own constant acceleration A and B. If the ramp
height h is imposed, for zero start-speed and zero
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f1 = new ChFunctionSine; 
f1.amp = 0.3; 
 
f2= new ChFunctionRamp; 
 
f3= new ChFunctionPoly; 
f3.order =2; 
f3.C0=0.2; 
f3.C1=0.1; 
 
f4= new ChFunctionSigma; 
f4.amp=-0.4; 
f4.end; 
 
f5= new ChFunctionConstAcc; 
f5.h=0.9; 
f5.av=0.4; 
f5.aw=0.6; 
 
f6= new ChFunctionOperation; 
 
 

f6op_a = new ChFunctionRamp; 
f6op_b = new ChFunctionSine; 
f6.fa = f6op_a; 
f6.fb = f6op_b; 
f6.op_type = CHOP_MULTIPLY; 
 
  // Append functions in seq.: 
f_sequence = new   
      ChFunctionSequence; 
f_sequence.append(f1,1, 
f2,0.2, f3,0.6, f4,1.5, 
f5,0.8, f6,0.6); 
 
  // Create some constraints: 
c1 = new ChConstraint_Chf_Val( 

f_sequence, "", 3,1); 
 
c2 = new 
ChConstraint_Chf_Continuity( 

f_sequence, "", 0,1); 
. . . 

Figure 4: Example of function sequence created via Javascript syntax.

 

Figure 5: Graphical user interface for easy function creation and
manipulation.

Figure 6: Constrained parametric design of motion laws as a tool
for multibody simulation of robotic devices.

end-speed there is a simple analytical solution: A =
2h/tvts, B = 2h/(ts(ts − tv)). The same result may
be obtained automatically with the method presented
in this paper, even if one does not know/remember the
analytical solution.

We starts with a function of type sequence,
containing two sub-functions of type constant. Let
the duration and values of these constant be arbitrary
values at the beginning. Now, put the sequence
function inside a function of type integrator, then
again into another integrator: we get the data tree
of figure 8. Hence the root function is the motion

ramp y(t), for generic constant accelerations whose
value is unknown. Finally, adding constraints such as
y|0 = 0, y|ts

= h, (∂y/∂t)0 = 0, (∂y/∂t)ts
= 0,

tv/ts = 0.5, the method will automatically find the
right parameters q which satisfy all requirements, in
detail the A and B values of the acceleration will
correspond exactly to the analytical formulas.

4.2 Complex sequence

Now a more complex motion law is presented, where
the values of function parameters which can satisfy
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Figure 7: Class hierarchy of motion laws.
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Figure 8: Example of a block-structured parametric function which reproduces a constant-acceleration motion law.
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Figure 9: Motion law with multiple constraints. Function segments are of polynomial type.

the constraints are not as trivial as in the previous
example. While designing the motion for a tool of
an automatic packaging device, a request was that the
motion law must have two constant-speed segments
(at given time intervals) before reaching the final
ramp height. Also, at a given instant of time, the
function must pass through a specific y value. The
segments between the two constant-speed intervals
are of polynomial type, and the resulting motion law
(after application of constraints) can be seen in Figure
9. Note that C0 and C1 continuity has been imposed
across the interfaces of all the segments.

5 CONCLUSION

A new method to design motion laws has been
proposed. It is based on the ability of imposing

constraints over sequences of functions, each defined
by parameters. The optimal value for these parameters
is obtained after the application of a modified Newton-
Lagrange process over a constrained optimization
problem of KKT type. The outer Newton loop
is endorsed by a Bunch-Parlett linear solver which
exploits the sparsity of the coefficient matrix, hence
allowing high computational efficiency even in case
of many constraints.

The resulting theory has been implemented into
our software for multibody simulation, thus providing
a powerful yet expandable way to design motion laws
for robots and automatic devices.

Future works may embrace the automatic adoption
of several polynomial shape functions instead of the
user-prepared sequence of few function segments.
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