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Abstract This white paper describes the fundamentals of the nonlinear �nite element

theory used to implement ANCF �nite elements in Chrono. The �nite elements ad-
dressed in this document are: the gradient-de�cient ANCF beam element and the
bi-linear ANCF laminated shell element with orthotropic material properties. This
ANCF shell element is also gradient de�cient, as it only has one single gradient vec-
tor, and implements �nite element numerical techniques to avoid kinematic locking,
namely the assumed natural strain (ANS) and the enhanced assumed strain (EAS).
This �nite element's formulation has been devised for tire modeling applications within
the context of �exible multibody dynamics and large-scale vehicle simulations.
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1. Introduction

The absolute nodal coordinate formulation (ANCF) is a nonlinear �nite element
formulation originated in the �eld of �exible multibody dynamics to describe
large deformation of moving bodies. This formulation was introduced by Sha-
bana [4] and contrasted with the co-rotational or �oating frame of reference
formulations because no co-rotated frame was used to describe the kinematics
of deformed �nite elements. Arguably, the most distinguishing feature of ANCF
is the use of position vector gradients to describe the rotation of the body as well
as its strain state, thereby avoiding the need for interpolating non-vectorial rota-
tion parameters [3]. Without intention of completeness, we present a summary
of the method in this section.

ANCF uses nodal, global position and position vector gradient vectors to
describe the dynamics of �exible bodies that can experience large (as opposed
to small) deformation; some authors identify this deformation magnitude as
�moderate�, leaving the term �large� for massive deformation, e.g. for Eulerian-
like approaches where the material �ows. In general, the position �eld of an
ANCF element may be de�ned as

ri(x, y, z, t)︸ ︷︷ ︸
Position of an arbitrary
point within the element

= S(x, y, z)︸ ︷︷ ︸
Space-dependent
shape function

× qi(t),︸ ︷︷ ︸
Vector of nodal

degrees of freedom

(1)

where i is an arbitrary �nite element, x, y, z are local element parameters, t
is the time, S a matrix of shape functions, and qj is a vector containing nodal
coordinates.

One classi�cation for ANCF elements may be based on the number of posi-
tion vector gradients per node, as follows:

• Fully parameterized. These ANCF �nite elements possess a full set of
gradient vectors, that is, each node has one position vector r, and three
position vector gradients rx, ry, and rz. Fully parameterized elements
can straightforwardly implement continuum mechanics approaches, which
usually rely on deformation gradient tensors, F .

• Gradient de�cient. Many ANCF �nite elements do not have a full set
of gradients for several reasons; e.g. one or two position vector gradients
may su�ce to de�ne a volume and, therefore, to use a continuum mechan-
ics approach. Further, the use of a class of gradient-de�cient elements
has been found to successfully eliminate diverse locking problems (poor
description of elemental strain state).

• Higher-order coordinates. Finite element technology allows the use of
higher-order derivatives of position vectors as nodal coordinates. This has
found to be bene�cial to employ description of strains based on continuum
mechanics [5].
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There is an extensive body of literature that deal with the development
of ANCF �nite elements, including beams, shells, plates, and solids. Here,
we are only going to summarize the formulation of two ANCF �nite elements
implemented in Chrono.

2. ANCF Beam Element

The ANCF beam element implemented in Chrono is a gradient-de�cient element
that was introduced by Berzeri and Shabana [2]. This beam element, sometimes
called �cable� element, consists of two nodes which have a position vector and a
position vector gradient along the beam center axis as coordinates (see Fig. 1).
The coordinates of a node k may be expressed as qk(t) =

[
rkT rkT

x

]T
. The

position �eld of the ANCF beam element is de�ned as

ri =
[
s1I s2I s3I s4I

] [
q1T q2T

]T
= S (x) qi, (2)

where the vector qi has the coordinates of both nodes, and the shape functions
are de�ned as

s1 = 1− 2x2 + 2x3,

s2 = l
(
x− 2x2 + x3

)
,

s3 = 3x2 − 2x3,

s4 = l
(
−x2 + x3

)
,

(3)

where x is the local parameter of the element (x = 0 at the �rst node) and l is
the �nite element's reference length.

 

Figure 1: ANCF beam element's kinematic description
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Elastic Forces

Two strains fully de�ne the internal forces of this element: the longitudinal
stretch, εx, and the curvature, κ. The virtual work exerted by the internal
forces may be written as follows

δWe =

∫
L

[EAεxδεx + EIκδκ]dx, (4)

where E, A, and I are the modulus of elasticity, the cross section area, and the
area moment of inertia, respectively; the longitudinal stretch and curvature are

εx =
1

2

(
rTx rx − 1

)
and κ=

|rx × rxx|
|rx|3

,

respectively, where rxx = ∂2r
/
∂x2.

Inertia Forces

The inertia forces take a simple form in ANCF; this is due to the description
of bodies' kinematics directly in global coordinates. The velocity of any point
within an element i may be written as

ṙi(x, y, z, t)︸ ︷︷ ︸
Velocity of an arbitrary
point within the element

= S(x, y, z)︸ ︷︷ ︸
Space-dependent
shape function

× q̇i(t).︸ ︷︷ ︸
Vector of

generalized velocities

(5)

The kinetic energy of a �nite element i may be obtained as

T =
1

2

∫
V

ρṙiTṙi dV =
1

2
q̇iTMq̇i. (6)

The mass matrix is de�ned as M =
∫
A
ρASTS dx = constant. By analyzing

Eqs. (2) and (6), the reader may realize that the computation of inertia forces is
much simpler than that of internal forces. This observation is valid not only for
the beam element presented in this section, but for all ANCF �nite elements:
Mass matrix is constant but the internal forces depend heavily nonlinearly on

the coordinates. It may also be noted that this particular ANCF beam element
assumes that the section is axisymmetric, that is, the cross section properties
are assumed to be same along any axis.

The Jacobian of the elastic forces is needed for the solution of index-3 DAEs
in Chrono using implicit numerical integrators. Currently, this Jacobian is com-
puted numerically via �nite di�erences.

3. Chrono's ANCF Shell Element

Chrono's users may �nd detailed descriptions of the Chrono's laminated ANCF
implementation in Refs.[6, 7].
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The basic kinematics of the absolute nodal coordinate formulation (ANCF)
shell �nite element implemented in Chrono is depicted in Fig.2. The nodal
position is de�ned as a function of the global position and the transverse gradient

vector riz = ∂ri

∂zi (xi, yi) which describes the orientation of the cross section.
Element i 's positions and gradients on the mid-plane can be fully described as

rim(xi, yi) = Sim(xi, yi)eip,
∂ri

∂zi
(xi, yi) = Sim(xi, yi)eig, (7)

where xi and yi refer to element i 's local coordinates in the parametric space,
Sim = [Si1I S

i
2I S

i
3I S

i
4I] is a bilinear shape function matrix, eikp = rik is the

position vector of node k of element i, and eikg = ∂rik/∂zi is the position vector
gradient of node k of element i (current and reference coordinates �taken from
the initial con�guration� are stored in the ANCF shell element. The bilinear
shape functions of the ANCF shell element are given by the following expressions

Si1 =
1

4
(1− ξi)(1− ηi), Si2 =

1

4
(1 + ξi)(1− ηi),

Si3 =
1

4
(1 + ξi)(1 + ηi), and Si4 =

1

4
(1− ξi)(1 + ηi).

Note that shape functions, position vector gradients, angles, transformation
matrices, intermediate operations between frames of reference, and strains are
adimensional. The position of an arbitrary point in the shell may be described
as

ri(xi, yi, zi) = Si(xi, yi, zi)ei, (8)

where the combined shape function matrix is given by Si = [Sim ziSim]. Sim-
ilarly, the coordinates of the element may be grouped together as ei =
[(eip)

T
(eig)

T ]T . Note that Eq. (8) incorporates the element parametric coordi-

nate along the element thickness zi. Relying on this kinematic description of
the shell element, the Green-Lagrange strain tensor may be calculated as

Ei =
1

2

((
Fi
)T

Fi − I
)
, (9)

where Fi is the deformation gradient matrix de�ned as the current con�guration
over the reference con�guration. Using the current absolute nodal coordinates,
this matrix may be de�ned as

Fi =
∂ri

∂Xi
=
∂ri

∂xi

(
∂Xi

∂xi

)−1

(10)

The strain tensor can then expressed in vector form in the following manner

εi =
[
εixx εiyy γixy εizz γixz γiyz

]T
(11)

where εi is the engineering strain vector in the deformed con�guration, com-
puted in Chrono API. Strain derivatives are calculated in order to obtain gener-
alized forces and an internal damping contribution. The elastic internal forces
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Figure 2: ANCF shell element's kinematic description

are spatially integrated over the element volume using Gaussian quadrature:

Qi
k = −

∫
V0

(
∂εc

∂ei

)
∂W i(εc + εEAS)

∂εi
dV0 (12)

where εc is the compatible strain, obtained from the displacement �eld using
�Assumed Natural Strain� interpolation to avoid transver/in-plane shear. Fur-
ther, the term W i(εc + εEAS) denotes the strain energy density function, which
must be obtained by adding an enhanced strain contribution, εEAS . The second

Piola�Kirchho� stress tensor is obtained from the relation σi = ∂W i(εc+εEAS)
∂εi .

The addition of assumed natural strains and enhanced strains �nds justi�cations
of the mixed variational principle by Hu�Washizu [1].

3.1 Computation of Strains for Curved, Orthotropic

Shells

Chrono allows the user to create initial geometries that will be automatically
considered as �reference� by using covariant transformations. This is internally
carried out in the implementation of the element. A frame of reference in the
initial (reference) con�guration is written as

(g0)1 = (r0)x =
∂r0
∂x

, (g0)2 = (r0)y =
∂r0
∂y

, (n0) = (r0)z =
∂r0
∂z

. (13)

where subscript 0 denotes initial. The unit base vectors of the local Cartesian
frame may be obtained as

(e0)1 =
(g0)1
|(g0)1|

, (e0)3 = n0, (e0)2 = (e0)3 × (e0)1. (14)
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For orthotropic materials, the mechanical behavior depends on �ber orienta-
tions. For this reason, it is necessary to include �ber angle in the de�nition
of the local Cartesian frame. Assuming that θ represents the �ber angle with
respect to the X axis of the previously calculated local Cartesian frame, the
new basis takes the following form:

(e0)Or1 = (e0)1 cos θ + (e0)2 sin θ,

(e0)Or2 = −(e0)1 sin θ + (e0)2 cos θ, (e0)Or3 = (e0)3.
(15)

The relation between the two covariant base vectors may be expressed as

(g0)i′ = βji′(e0)Or1,j , (16)

where scalars βji′ are obtained via a dot product between two adimensional
vectors. In matrix form, the coe�cients of contravariance transformation may be
obtained from the Jacobian of the position vectors at the reference con�guration
and the local Cartesian frame including anisotropy in the following form

β =

 Y−1
∣∣
C1

T

Y−1
∣∣
C2

T

Y−1
∣∣
C3

T

 [ (e0)1 (e0)2 (e0)3
]

(17)

where Y−1|Ci is the i column of the inverse of Y = ∂r
∂x =

[
(g0)1 (g0)2 n0

]
.

The components of the 3-by-3 matrix β are used to set up a transformation
matrix necessary for the calculation of strains:

β =

 β11 β12 β13
β21 β22 β23
β31 β32 β33

 (18)

where βij = β(i, j). Finally the compatible strains are calculated as:

ε =
1

2
βT

 g11 g12 g13
g21 g22 g23
g31 g32 g33

−
 (g0)11 (g0)12 (g0)13

(g0)21 (g0)22 (g0)23
(g0)31 (g0)32 (g0)33

β =

 ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 ,
(19)

where gij = gi · gj and (g0)ij = (g0)i · (g0)j .

3.2 ANCF Shell Element Implementation

3.2.1 Initial Steps

Chrono calls the method MyForce::Evaluate to evaluate the internal forces of
the shell element at one Gauss point. The orientations and contravariant vectors
are computed in order to perform calculation of strains as orthotropic material
which may an initially curved con�guration.
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3.2.2 Locking Remedies - Enhanced Assumed Strain

The Enhanced Assumed Strain (EAS) is added to the compatible strain in order
to alleviate transverse shear locking. From Eq. (10), we can de�ne the following
matrix Ji, which relates the initial and reference con�guration:

Ji =
∂Xi

∂xi
, (20)

where Ji is the inverse of the deformation gradient and is used to construct a
constant transformation matrix (note that Ji only depends on the initial and
reference con�guration).

Ti =


(Ji

11)
2

(Ji
12)

2
2Ji

11J
i
12 (Ji

13)
2

2Ji
11J

i
13 2Ji

12J
i
13

(Ji
21)

2
(Ji

22)
2

2Ji
21J

i
22 (Ji

23)
2

2Ji
21J

i
23 2Ji

22J
i
23

Ji
11J

i
21 Ji

12J
i
22 Ji

11J
i
22 + Ji

12J
i
21 Ji

13J
i
23 Ji

11J
i
23 + Ji

13J
i
21 Ji

12J
i
23 + Ji

13J
i
22

(Ji
31)

2
(Ji

32)
2

2Ji
31J

i
32 (Ji

33)
2

2Ji
31J

i
33 2Ji

32J
i
33

Ji
11J

i
31 Ji

12J
i
32 Ji

11J
i
32 + Ji

12J
i
31 Ji

13J
i
33 Ji

11J
i
33 + Ji

13J
i
31 Ji

12J
i
33 + Ji

13J
i
32

Ji
21J

i
31 Ji

22J
i
32 Ji

21J
i
32 + Ji

22J
i
31 Ji

23J
i
33 Ji

21J
i
33 + Ji

23J
i
31 Ji

22J
i
33 + Ji

23J
i
32


(21)

The interpolation matrix for the distribution of the in-plane strains is de�ned
as

N(ξ) =


ξ 0 0 0 0
0 η 0 0 0
0 0 ξ η 0
0 0 0 0 ζ
0 0 0 0 0
0 0 0 0 0

 (22)

This matrix guarantees that
∫
N(ξ)dξ = 0. The following 6-by-5 matrix is

de�ned to include the enhanced assumed strain in the internal forces:

G(ξ) =
|J0|
|J(ξ)|

T−T
0 N(ξ), (23)

where T0 is a constant transformation matrix obtained by evaluating T at the
center of the element in the reference con�guration. With the aid of a vector of
internal parameters α, the EAS may be calculated as

εEAS(ξ) = G(ξ)α. (24)

The total strain will be the addition of the compatible strain and the EAS, as
follows

ε = εc + εEAS (25)

The EAS strain is a function of the G matrix at each Gaussian integration
point and the vector of internal parameters α, which is calculated by solving

iteratively the equation hi(ei, αi) =
∫
V i
o

(∂ε
EAS

∂αi )
T ∂Wi(εc+εEAS)

∂εi dV i0 = 0. The

values of hi, ∂hn

∂αn
, and ∂hn

∂αn
are computed within the Gaussian integration loop.

The updated value of α in the current iteration is de�ned by αn+1 = αn −
( ∂hn

∂αn
)
−1

(hn + ∂hn

∂en
∆en+1).
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3.2.3 Locking Remedies - Assumed Natural Strain

Assumed natural strains (ANS) are introduced in Chrono's implementation to
avoid shear and thickness locking in the shell �nite element. Compatible thick-
ness and shear strains, which are interpolated in the computation of internal
forces. Additional sampling points A, B, C, and D, located at the middle of the
element edges, are used to calculate the ANS strain as follows

εANSzz = SANS1 ε1zz + SANS2 ε2zz + SANS3 ε3zz + SANS4 ε4zz (26)

γ̃ANSxz =
1

2
(1− η) γ̃Cxz +

1

2
(1 + η) γ̃Dxz (27)

γ̃ANSyz =
1

2
(1− ξ) γ̃Ayz +

1

2
(1 + ξ) γ̃Bxz, (28)

where tildes denote covariant quantities.

3.2.4 Equations of Motion

The mass matrix of the element is given by

Mi =

∫
V i
o

ρi0(Si)
T
SidV io , (29)

which remains constant throughout the simulation. The equations of motion
may be written as

Miëi = Qi
k(ei, ėi, αi) + Qi

e(e
i, ėi, t), (30)

where Qk is the element elastic force vector and Qe is the external force vector.
The Newton di�erences for en+1 and αn+1 are calculated by solving the following
system of equations[

∂f/∂en ∂f/∂αn
∂h/∂en ∂h/∂αn

] [
∆en+1

∆αn+1

]
= −

[
fn
hn

]
. (31)

After eliminating ∆αn+1 the following equation can solve for ∆en+1 using the
following equation:(

∂fn
∂en

− ∂fn
∂αn

(
∂hn
∂αn

)−1
∂hn
∂en

)
∆en+1 = −fn +

∂fn
∂αn

(
∂hn
∂αn

)−1

hn. (32)

3.3 Computation of the Jacobian of the Elastic Forces

The Jacobian of the elastic forces are calculated in MyJacobian::Evaluate.
The method for Jacobian of elastic forces recalculates many of the quantities
involved in the computation of internal forces. This is done this way in order
to e�ectively separate the both calculations and allow for single computation of
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the Jacobian in each time step (in the future). Basic quantities related to the
ANCF shell element internal forces are recalculated for the calculation of the
Jacobian.

The Jacobian of the elastic forces is split into di�erent parts:

Jacobian of elastic forces Direct derivation of generalized elastic forces
w.r.t. coordinates (Eq. (12)).

Jacobian of EAS forces The Jacobian of the generalized forces coming from
the EAS formulation.

The computation of the Jacobian of the elastic forces is called for each layer
of material. The total Jacobian, for all the layers of the element, is accumulated
if the element features more than one layer.
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