
Chrono::Vehicle Tutorial
Tracked vehicle system
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Vehicle ISO reference frames
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ChTrackedVehicle base class

• A ChTrackedVehicle is a Chrono ChVehicle:

• A ChTrackedVehicle has:
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/// Base class for chrono tracked vehicle systems.
/// This class provides the interface between the vehicle system and other
/// systems (terrain, driver, etc.)
class CH_VEHICLE_API ChWheeledVehicle : public ChVehicle

std::shared_ptr<ChTrackAssembly> m_tracks[2];   ///< handles to the track assemblies (left/right)
std::shared_ptr<ChTrackDriveline> m_driveline;  ///< handle to the driveline subsystem

ChTrackContactManager* m_contacts;  ///< manager for internal contacts



ChTrackedVehicle base class accessors

• Deferring to its constituent subsystems as needed, a ChTrackedVehicle provides 
accessors for:

• Vehicle subsystems
• States of the vehicle’s track shoe bodies
• Inherited accessors from ChVehicle

• A ChTrackedVehicle intermediates communication between other systems (e.g., 
powertrain, driver, etc.) and constituent subsystems (e.g., sprockets, driveline, 
brakes, etc.)
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ChTrackedVehicle base class virtual functions

• Synchronize the vehicle at a communication time with data from other systems

7

/// Update the state of this vehicle at the current time.
/// The vehicle system is provided the current driver inputs (throttle between
/// 0 and 1, steering between -1 and +1, braking between 0 and 1), the torque
/// from the powertrain, and tire forces (expressed in the global reference
/// frame).
void Synchronize(double time,                              ///< [in] current time

double steering,                          ///< [in] current steering input [-1,+1]
double braking,                           ///< [in] current braking input [0,1]
double powertrain_torque,                 ///< [in] input torque from powertrain
const TrackShoeForces& shoe_forces_left,  ///< [in] vector of track shoe forces (left side)
const TrackShoeForces& shoe_forces_right ///< [in] vector of track shoe forces (left side)
);



Data exchange structures

• TrackShoeForce structure – encapsulates external forces applied to a track shoe body
• Force vector and application point (expressed in the global reference frame)
• Moment vector (expressed in the global reference frame)

• A track shoe force structure can be specified for any (or all) track shoes (e.g., to model 
track-terrain contact forces)

• The force and moment are applied to the track shoe body as external forces
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/// Structure to communicate a set of generalized track shoe forces.
struct TrackShoeForce {

ChVector<> force;   ///< force vector, epxressed in the global frame
ChVector<> point;   ///< global location of the force application point
ChVector<> moment;  ///< moment vector, expressed in the global frame

};



JSON specification file for a tracked vehicle
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JSON file with chassis specification
(relative to the root of the data directory)

System type (string)

Template type (string)

{
"Name":     "M113 vehicle",
"Type":     "Vehicle",
"Template": "TrackedVehicle",

"Chassis":
{
"Input File":           "M113/chassis/M113_Chassis.json"

},

"Track Assemblies":
[
{
"Input File":         "M113/track_assembly/M113_TrackAssemblySinglePin_Left.json",
"Offset":             1.0795

},

{
"Input File":         "M113/track_assembly/M113_TrackAssemblySinglePin_Right.json",
"Offset":             -1.0795

}
],

"Driveline":
{
"Input File":           "M113/driveline/M113_SimpleTrackDriveline.json"

}
}

JSON file with left track assembly specification
(relative to the root of the data directory)

JSON file with driveline specification
(relative to the root of the data directory)

Lateral (Y-direction) offset of left track



Tracked vehicle subsystem hierarchy
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Subsystem dependencies

• Sprocket ↔ track-shoe
• Sprocket type and track-shoe type must match:

• “single-pin”
• “double-pin”

• Contact between sprocket and track shoes is implemented through a custom callback which 
assumes consistency

• Sprocket/Idler/road-wheel ↔ track-shoe
• Wheel type and track-shoe type must match:

• “single-wheel” and “lateral guiding pin”
• “double-wheel” and “central guiding pin”

• Note: track shoes with lateral guiding pins currently not implemented
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Track Assembly Subsystem
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ChTrackAssembly base class

• ChTrackAssembly is a composite class, used to manage all subsystems comprising 
a (left or right) track assembly:

• A sprocket and brake
• An idler assembly (idler wheel + tensioner mechanism)
• A set of suspensions (each containing a road-wheel)
• A set of track shoes

• Derived classes ensure consistency between subsystem types
• ChTrackAssembly provides the algorithm for assembling the track shoes around 

the wheels (sprocket, idler, road-wheels)
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/// Definition of a track assembly.
/// A track assembly consists of a sprocket, an idler (with tensioner mechanism),
/// a set of suspensions (road-wheel assemblies), and a collection of track shoes.
class CH_VEHICLE_API ChTrackAssembly : public ChPart



ChTrackAssembly class members

• A ChTrackAssembly has:

• Derived classes (track assembly templates) manage the sprocket and track shoes 
of appropriate types
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VehicleSide m_side;                     ///< assembly on left/right vehicle side
std::shared_ptr<ChIdler> m_idler;       ///< idler (and tensioner) subsystem
std::shared_ptr<ChTrackBrake> m_brake;  ///< sprocket brake
ChRoadWheelAssemblyList m_suspensions;  ///< road-wheel assemblies



ChTrackAssembly base class accessors

• A ChTrackAssembly provides access to:
• Its constituent subsystems (sprocket, brake, idler, suspensions, individual track shoes)

• Sprocket and track shoe access provided through pure virtual methods
• Relative positions of its constituent subsystems

• The ISO track assembly reference frame is assumed to have origin at the center of the sprocket
• Complete state of a track shoe subsystem (through its index in the vector of track shoes in the 

assembly)
• Cumulative mass of the track assembly
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ChTrackAssembly base class methods

• A ChTrackAssembly provides methods to:
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/// Initialize this track assembly subsystem.
/// The subsystem is initialized by attaching it to the specified chassis body
/// at the specified location (with respect to and expressed in the reference
/// frame of the chassis). It is assumed that the track assembly reference frame
/// is always aligned with the chassis reference frame.
void Initialize(std::shared_ptr<ChBodyAuxRef> chassis,  ///< [in] handle to the chassis body

const ChVector<>& location              ///< [in] location relative to the chassis frame
);

/// Update the state of this track assembly at the current time.
void Synchronize(double time,                        ///< [in] current time

double braking,                     ///< [in] braking driver input
const TrackShoeForces& shoe_forces ///< [in] vector of tire force structures
);



ChTrackAssembly base class virtual methods

• A derived class must provide a method for assembling track shoes around the assembly’s 
wheels

• Track shoes are positioned from below the sprocket, clockwise or counter-clockwise, 
depending on whether the assembly has a front or rear sprocket

• Note that this process is relatively fragile
• May require adjustments to initial idler position
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/// Assemble track shoes over wheels.
/// Return true if the track shoes were initialized in a counter clockwise
/// direction and false otherwise.
virtual bool Assemble(std::shared_ptr<ChBodyAuxRef> chassis) = 0;



Track Assembly Templates
Single-pin
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JSON specification for single-pin track assembly (1/2)
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{
"Name":                     "M113 SinglePin TrackAssembly Left",
"Type":                     "TrackAssembly",
"Template":                 "TrackAssemblySinglePin",

"Sprocket":
{

"Input File":           "M113/sprocket/M113_SprocketSinglePin_Left.json",
"Location":             [0, 0, 0]

},

"Brake":
{

"Input File":           "M113/brake/M113_TrackBrakeSimple.json"
},

"Idler":
{

"Input File":           "M113/idler/M113_DoubleIdler_Left.json",
"Location":             [-3.83, 0, -0.12]

},

"Track Shoes":
{

"Input File":           "M113/track_shoe/M113_TrackShoeSinglePin.json",
"Number Shoes":         63

},

System type (string)

Template type (string)

Location of sprocket subsystem
with respect to assembly reference frame

Location of idler subsystem
with respect to assembly reference frame



JSON specification for single-pin track assembly (2/2)
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"Suspension Subsystems":
[
{

"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          true,
"Location":           [-0.655, 0, -0.215]

},

{
"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          true,
"Location":           [-1.322, 0, -0.215]

},

{
"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          false,
"Location":           [-1.989, 0, -0.215]

},

{
"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          false,
"Location":           [-2.656, 0, -0.215]

},

{
"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          true,
"Location":           [-3.322, 0, -0.215]

}
]

}

Location of first (front) suspension subsystem
with respect to assembly reference frame



Track Assembly Templates
Double-pin
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JSON specification for double-pin track assembly (1/2)
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{
"Name":                     "M113 DoublePin TrackAssembly Left",
"Type":                     "TrackAssembly",
"Template":                 "TrackAssemblyDoublePin",

"Sprocket":
{

"Input File":           "M113/sprocket/M113_SprocketDoublePin_Left.json",
"Location":             [0, 0, 0]

},

"Brake":
{

"Input File":           "M113/brake/M113_TrackBrakeSimple.json"
},

"Idler":
{

"Input File":           "M113/idler/M113_DoubleIdler_Left.json",
"Location":             [-3.83, 0, -0.12]

},

"Track Shoes":
{

"Input File":           "M113/track_shoe/M113_TrackShoeDoublePin.json",
"Number Shoes":         63

},



JSON specification for double-pin track assembly (2/2)
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"Suspension Subsystems":
[
{

"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          true,
"Location":           [-0.655, 0, -0.215]

},

{
"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          true,
"Location":           [-1.322, 0, -0.215]

},

{
"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          false,
"Location":           [-1.989, 0, -0.215]

},

{
"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          false,
"Location":           [-2.656, 0, -0.215]

},

{
"Input File":         "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock":          true,
"Location":           [-3.322, 0, -0.215]

}
]

}



Suspension Subsystem
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ChRoadWheelAssembly base class

• Base class for track suspension subsystems
• Provides access to the underlying road-wheel subsystem and its components 

(body and revolute joint)
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/// Base class for tracked vehicle suspension (road-wheel assembly) subsystem.
class CH_VEHICLE_API ChRoadWheelAssembly : public ChPart



ChRoadWheelAssembly class members

• A ChRoadWheelAssembly has:
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GuidePinType m_type;          ///< type of the track shoe matching this road wheel
std::shared_ptr<ChRoadWheel> m_road_wheel;  ///< road-wheel subsystem



Suspension Templates
Linear-damper suspension
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Template specification
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JSON specification for linear-damper suspension
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{
"Name":                           "M113 Linear Damper Suspension Left",
"Type":                           "RoadWheelAssembly",
"Template":                       "LinearDamperRWAssembly",

"Suspension Arm":
{

"Mass":                       75.26,
"COM":                        [0.144, -0.12, 0.067],
"Inertia":                    [0.37, 0.77, 0.77],
"Location Chassis":           [0.288, -0.12, 0.134],
"Location Wheel":             [0, -0.12, 0],
"Radius":                     0.03

},

"Torsional Spring":
{

"Spring Constant":            2.5e4,
"Damping Coefficient":        5e2,
"Preload":                    -1e4

},

"Damper":
{

"Location Chassis":           [-0.3, -0.12, 0.3],
"Location Arm":               [0.184, -0.12, -0.106],
"Damping Coefficient":        1e2

},

"Road Wheel Input File":          "M113/road_wheel/M113_DoubleRoadWheel_Left.json"
}



Suspension Templates
Rotational-damper suspension
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Template specification
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Suspension Templates
Hydropneumatic suspension
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Template specification
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Road-wheel Subsystem
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ChRoadWheel base class

• A road wheel is a single rigid body with contact shape specified by a concrete 
subsystem template class

• Member variables
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/// Base class for a road wheel subsystem.
class CH_VEHICLE_API ChRoadWheel : public ChPart

std::shared_ptr<ChBody> m_wheel;                 ///< handle to the road wheel body
std::shared_ptr<ChLinkLockRevolute> m_revolute;  ///< handle to wheel revolute joint

float m_friction;       ///< contact coefficient of friction
float m_restitution;    ///< contact coefficient of restitution
float m_young_modulus;  ///< contact material Young modulus
float m_poisson_ratio;  ///< contact material Poisson ratio
float m_kn;             ///< normal contact stiffness
float m_gn;             ///< normal contact damping
float m_kt;             ///< tangential contact stiffness
float m_gt;             ///< tangential contact damping



ChRoadWheel class members

• A ChRoadWheel has:
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std::shared_ptr<ChBody> m_wheel;                 ///< handle to the road wheel body
std::shared_ptr<ChLinkLockRevolute> m_revolute;  ///< handle to wheel revolute joint

float m_friction;       ///< contact coefficient of friction
float m_restitution;    ///< contact coefficient of restitution
float m_young_modulus;  ///< contact material Young modulus
float m_poisson_ratio;  ///< contact material Poisson ratio
float m_kn;             ///< normal contact stiffness
float m_gn;             ///< normal contact damping
float m_kt;             ///< tangential contact stiffness
float m_gt;             ///< tangential contact damping



ChRoadWheel base class accessor methods
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/// Get a handle to the road wheel body.
std::shared_ptr<ChBody> GetWheelBody() const { return m_wheel; }

/// Get a handle to the revolute joint.
std::shared_ptr<ChLinkLockRevolute> GetRevolute() const { return m_revolute; }

/// Return the mass of the road wheel body.
virtual double GetWheelMass() const = 0;

/// Return the moments of inertia of the road wheel body.
virtual const ChVector<>& GetWheelInertia() = 0;

/// Get the radius of the road wheel.
virtual double GetWheelRadius() const = 0;

/// Get coefficient of friction for contact material.
float GetCoefficientFriction() const { return m_friction; }
/// Get coefficient of restitution for contact material.
float GetCoefficientRestitution() const { return m_restitution; }
/// Get Young's modulus of elasticity for contact material.
float GetYoungModulus() const { return m_young_modulus; }
/// Get Poisson ratio for contact material.
float GetPoissonRatio() const { return m_poisson_ratio; }
/// Get normal stiffness coefficient for contact material.
float GetKn() const { return m_kn; }
/// Get tangential stiffness coefficient for contact material.
float GetKt() const { return m_kt; }
/// Get normal viscous damping coefficient for contact material.
float GetGn() const { return m_gn; }
/// Get tangential viscous damping coefficient for contact material.
float GetGt() const { return m_gt; }



ChRoadWheel base class methods
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/// Set coefficient of friction.
/// The default value is 0.7
void SetContactFrictionCoefficient(float friction_coefficient) { m_friction = friction_coefficient; }
/// Set coefficient of restiturion.
/// The default value is 0.1
void SetContactRestitutionCoefficient(float restitution_coefficient) { m_restitution = restitution_coefficient; }
/// Set contact material properties.
/// These values are used to calculate contact material coefficients (if the containing
/// system is so configured and if the DEM-P contact method is being used).
/// The default values are: Y = 1e8 and nu = 0.3
void SetContactMaterialProperties(float young_modulus,  ///< [in] Young's modulus of elasticity

float poisson_ratio   ///< [in] Poisson ratio
);

/// Set contact material coefficients.
/// These values are used directly to compute contact forces (if the containing system
/// is so configured and if the DEM-P contact method is being used).
/// The default values are: kn=2e5, gn=40, kt=2e5, gt=20
void SetContactMaterialCoefficients(float kn,  ///< [in] normal contact stiffness

float gn,  ///< [in] normal contact damping
float kt,  ///< [in] tangential contact stiffness
float gt ///< [in] tangential contact damping
);

/// Initialize this road wheel subsystem.
/// The road wheel subsystem is initialized by attaching it to the specified
/// carrier body at the specified location (with respect to and expressed in the
/// reference frame of the chassis).
/// A derived road wheel subsystem template class must extend this default
/// implementation and specify contact geometry for the road wheel.
virtual void Initialize(std::shared_ptr<ChBodyAuxRef> chassis,  ///< [in] handle to the chassis body

std::shared_ptr<ChBody> carrier,        ///< [in] handle to the carrier body
const ChVector<>& location              ///< [in] location relative to the chassis frame
);



Road-wheel Templates
Double road-wheel
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ChDoubleRoadWheel geometry
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JSON specification for double road-wheel
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{
"Name":                           "M113 Double RoadWheel Left",
"Type":                           "RoadWheel",
"Template":                       "DoubleRoadWheel",

"Wheel":
{

"Radius":                     0.305,
"Width":                      0.181,
"Gap":                        0.051,
"Mass":                       561.1,
"Inertia":                    [19.82, 26.06, 19.82]

},

"Contact Material":
{

"Coefficient of Friction":    0.7,
"Coefficient of Restitution": 0.1,
"Properties": {

"Young Modulus":          1e7,
"Poisson Ratio":          0.3

},
"Coefficients": {

"Normal Stiffness":       2e5,
"Normal Damping":         40.0,
"Tangential Stiffness":   2e5,
"Tangential Damping":     20.0

}
},

"Visualization":
{

"Mesh Filename":              "M113/Roller_L.obj",
"Mesh Name":                  "Roller_L_POV_geom"

}
}



Sprocket Subsystem
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ChSprocket base class

• A sprocket is responsible for collision detection and contact processing between 
the sprocket and the track shoes

• A derived class which implements a particular sprocket template must specify the 
custom collision callback object and provide the gear profile as a 2D path.

• The gear profile, a ChLinePath geometric object, is made up of an arbitrary 
number of sub-paths of type ChLineArc or ChLineSegment sub-lines.

• These must be added in  clockwise order, and the end of sub-path i must be 
coincident with beginning of sub-path i+1.
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/// Base class for a tracked vehicle sprocket.
/// A sprocket is responsible for contact processing with the track shoes of the containing track assembly.
class CH_VEHICLE_API ChSprocket : public ChPart



ChSprocket class members

• A ChSprocket has:
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std::shared_ptr<ChBody> m_gear;                   ///< handle to the sprocket gear body
std::shared_ptr<ChShaft> m_axle;                  ///< handle to gear shafts
std::shared_ptr<ChShaftsBody> m_axle_to_spindle;  ///< handle to gear-shaft connector
std::shared_ptr<ChLinkLockRevolute> m_revolute;   ///< handle to sprocket revolute joint

ChSystem::ChCustomComputeCollisionCallback* m_callback;  ///< custom collision functor object

float m_friction;       ///< contact coefficient of friction
float m_restitution;    ///< contact coefficient of restitution
float m_young_modulus;  ///< contact material Young modulus
float m_poisson_ratio;  ///< contact material Poisson ratio
float m_kn;             ///< normal contact stiffness
float m_gn;             ///< normal contact damping
float m_kt;             ///< tangential contact stiffness
float m_gt;             ///< tangential contact damping



Sprocket Templates
Single-pin sprocket
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ChSprocketSinglePin geometry
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JSON specification for single-pin sprocket (1/2)
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{
"Name":                           "M113 SinglePin Sprocket Left",
"Type":                           "Sprocket",
"Template":                       "SprocketSinglePin",

"Number Teeth":                   10,
"Gear Mass":                      436.7,
"Gear Inertia":                   [12.22, 13.87, 12.22],
"Axle Inertia":                   1.0,
"Gear Separation":                0.225,

"Profile":
{

"Addenum Radius":             0.2605,
"Arc Radius":                 0.089,
"Arc Centers Radius":         0.3,
"Assembly Radius":            0.245

},



JSON specification for single-pin sprocket (2/2)
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"Contact Material":
{

"Coefficient of Friction":    0.4,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus":          1e7,
"Poisson Ratio":          0.3

},

"Coefficients": {
"Normal Stiffness":       2e5,
"Normal Damping":         40.0,
"Tangential Stiffness":   2e5,
"Tangential Damping":     20.0

}
},

"Visualization":
{

"Mesh Filename":              "M113/Sprocket_L.obj",
"Mesh Name":                  "Sprocket_L_POV_geom"

}
}



Sprocket Templates
Double-pin sprocket
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ChSprocketDoublePin geometry
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JSON specification for double-pin sprocket (1/2)
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{
"Name":                           "M113 DoublePin Sprocket Left",
"Type":                           "Sprocket",
"Template":                       "SprocketDoublePin",

"Number Teeth":                   10,
"Gear Mass":                      436.7,
"Gear Inertia":                   [12.22, 13.87, 12.22],
"Axle Inertia":                   1.0,
"Gear Separation":                0.225,

"Profile":
{

"Addenum Radius":             0.2715,
"Arc Radius":                 0.0223,
"Assembly Radius":            0.242,
"Arc Center Height":          0.2371,
"Arc Center Offset":          0.0464

},

Outer radius

Arc radius

Height

Offset



JSON specification for double-pin sprocket (2/2)
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"Contact Material":
{

"Coefficient of Friction":    0.4,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus":          1e7,
"Poisson Ratio":          0.3

},

"Coefficients": {
"Normal Stiffness":       2e5,
"Normal Damping":         40.0,
"Tangential Stiffness":   2e5,
"Tangential Damping":     20.0

}
}

}



Track-shoe Subsystem
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ChTrackShoe base class

• Specifies the interface for the track shoe subsystem
• Provides the contact material properties
• A derived class must implement:

• a method to initialize the track shoe subsystem at a given location and with a given 
orientation

• a method to connect two adjacent track shoes (always assumed to have proper relative 
positions)

57

/// Base class for a track shoe.
class CH_VEHICLE_API ChTrackShoe : public ChPart



ChTrackShoe class members

• A ChTrackShoe has:
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size_t m_index;              ///< index of this track shoe within its containing track assembly
std::shared_ptr<ChBody> m_shoe;  ///< handle to the shoe body

float m_friction;       ///< contact coefficient of friction
float m_restitution;    ///< contact coefficient of restitution
float m_young_modulus;  ///< contact material Young modulus
float m_poisson_ratio;  ///< contact material Poisson ratio
float m_kn;             ///< normal contact stiffness
float m_gn;             ///< normal contact damping
float m_kt;             ///< tangential contact stiffness
float m_gt;             ///< tangential contact damping



Track-shoe Templates
Single-pin track-shoe
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ChTrackShoeSinglePin geometry
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• Single-pin, single-body track shoe
• Central guiding pin (i.e. consistent with ChDoubleIdler, ChDoubleRoadWheel)
• Connection to adjacent track shoe is through revolute joints (except the track 

loop closure)



JSON specification for single-pin track-shoe (1/2)
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{
"Name":                           "M113 SinglePin TrackShoe Left",
"Type":                           "TrackShoe",
"Template":                       "TrackShoeSinglePin",

"Shoe":
{

"Height":                     0.06,
"Pitch":                      0.154,
"Mass":                       18.02,
"Inertia":                    [0.22, 0.04, 0.25]

},

"Contact Geometry":
{

"Shoe":
{

"Pad Dimensions":         [0.11, 0.19, 0.06],
"Pad Location":           [0, 0, 0],
"Guide Dimensions":       [0.0284, 0.0114, 0.075],
"Guide Location":         [0.045, 0, 0.0375]

},

"Cylinder":
{

"Radius":                 0.015,
"Front Offset":           0.0535,
"Rear Offset":            -0.061

}
},



JSON specification for single-pin track-shoe (2/2)
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"Contact Material":
{

"Coefficient of Friction":    0.8,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus":          1e7,
"Poisson Ratio":          0.3

},

"Coefficients": {
"Normal Stiffness":       2e5,
"Normal Damping":         40.0,
"Tangential Stiffness":   2e5,
"Tangential Damping":     20.0

}
},

"Visualization":
{

"Mesh Filename":              "M113/TrackShoe.obj",
"Mesh Name":                  "TrackShoe_POV_geom"

}
}



Track-shoe Templates
Double-pin track-shoe
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ChTrackShoeDoublePin geometry
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• Double-pin, single-body track shoe
• Central guiding pin (i.e. consistent with ChDoubleIdler, ChDoubleRoadWheel)
• Connection to adjacent track shoe is through spherical joints (except the track 

loop closure)
• Revolute joints between shoe body and connector bodies 



JSON specification for double-pin track-shoe (1/2)
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{
"Name":                           "M113 DoublePin TrackShoe Left",
"Type":                           "TrackShoe",
"Template":                       "TrackShoeDoublePin",

"Shoe":
{

"Length":                     0.0984,
"Width":                      0.2781,
"Height":                     0.06,
"Mass":                       18.02,
"Inertia":                    [0.22, 0.04, 0.25]

},

"Connector":
{

"Radius":                     0.02,
"Length":                     0.054,
"Width":                      0.02,
"Mass":                       2.0,
"Inertia":                    [0.1, 0.1, 0.1]

},

"Contact Geometry":
{

"Shoe":
{

"Pad Dimensions":         [0.11, 0.19, 0.06],
"Pad Location":           [0, 0, 0],
"Guide Dimensions":       [0.0284, 0.0114, 0.075],
"Guide Location":         [0.045, 0, 0.0375]

}
},



JSON specification for double-pin track-shoe (2/2)
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"Contact Material":
{

"Coefficient of Friction":    0.8,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus":          1e7,
"Poisson Ratio":          0.3

},

"Coefficients": {
"Normal Stiffness":       2e5,
"Normal Damping":         40.0,
"Tangential Stiffness":   2e5,
"Tangential Damping":     20.0

}
}

}



Idler Subsystem
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ChIdler base class

• An idler subsystem consists of the idler wheel and a connecting body.  
• The idler wheel is connected through a revolute joint to the connecting body 

which in turn is connected to the chassis through a translational joint.
• A linear actuator acts as a tensioner.

• An idler subsystem is defined with respect to a frame centered at the origin of the 
idler wheel, possibly pitched relative to the chassis reference frame.

• The translational joint is aligned with the x axis of this reference frame, while the 
axis of rotation of the revolute joint is aligned with its y axis.
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/// Base class for an idler subsystem.
/// An idler consists of the idler wheel and a connecting body.  The idler wheel is connected
/// through a revolute joint to the connecting body which in turn is connected to the chassis
/// through a translational joint. A linear actuator acts as a tensioner.
class CH_VEHICLE_API ChIdler : public ChPart



ChIdler class members

• A ChIdler has:
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std::shared_ptr<ChBody> m_wheel;                   ///< handle to the idler wheel body
std::shared_ptr<ChBody> m_carrier;                 ///< handle to the carrier body
std::shared_ptr<ChLinkLockRevolute> m_revolute;    ///< handle to wheel-carrier revolute joint
std::shared_ptr<ChLinkLockPrismatic> m_prismatic;  ///< handle to carrier-chassis translational joint
std::shared_ptr<ChLinkSpringCB> m_tensioner;       ///< handle to the TSDA tensioner element

float m_friction;       ///< contact coefficient of friction
float m_restitution;    ///< contact coefficient of restitution
float m_young_modulus;  ///< contact material Young modulus
float m_poisson_ratio;  ///< contact material Poisson ratio
float m_kn;             ///< normal contact stiffness
float m_gn;             ///< normal contact damping
float m_kt;             ///< tangential contact stiffness
float m_gt;             ///< tangential contact damping



Idler Templates
Double idler
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ChDoubleIdler geometry
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JSON specification for double idler (1/2)

72

{
"Name":                           "M113 Double Idler Left",
"Type":                           "Idler",
"Template":                       "DoubleIdler",

"Wheel":
{

"Radius":                     0.255,
"Width":                      0.181,
"Gap":                        0.051,
"Mass":                       429.5,
"COM":                        [0, 0, 0],
"Inertia":                    [12.55, 14.70, 12.55]

},

"Carrier":
{

"Mass":                       50.0,
"COM":                        [0, -0.1, 0],
"Inertia":                    [2, 2, 2],
"Location Chassis":           [0, -0.2, 0],
"Visualization Radius":       0.02,
"Pitch Angle":                0

},

"Tensioner":
{
"Location Carrier":             [0, -0.2, 0],
"Location Chassis":             [0.5, -0.2, 0],
"Preload":                      2e4,
"Free Length":                  0.75,
"Spring Coefficient":           1e6,
"Damping Coefficient":          1.4e4

},



JSON specification for double idler (2/2)
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"Contact Material":
{

"Coefficient of Friction":    0.7,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus":          1e8,
"Poisson Ratio":          0.3

},

"Coefficients": {
"Normal Stiffness":       2e5,
"Normal Damping":         40.0,
"Tangential Stiffness":   2e5,
"Tangential Damping":     20.0

}
},

"Visualization":
{

"Mesh Filename":              "M113/Idler_L.obj",
"Mesh Name":                  "Idler_L_POV_geom"

}
}



Brake Subsystem
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ChTrackBrake base class

• Defines the common interface for any brake subsystem
• All classes defining particular brake templates inherit from ChTrackBrake
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///
/// Base class for a track brake subsystem
///
class CH_VEHICLE_API ChTrackBrake : public ChPart



Brake Templates
Simple track brake

76



ChTrackBrakeSimple

• Simple brake model using a constant torque opposing sprocket rotation.
• Uses a speed-dependent torque
• It cannot simulate sticking
• On initialization, it is associated with a revolute joint connecting the sprocket gear body
• Has a single parameter, the maximum braking torque
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JSON specification file for TrackBrakeSimple
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Subsystem type (string)

Template type (string)

Maximum braking torque in Nm (double)

{
"Name":                       "M113 Siple Brake",
"Type":                       "TrackBrake",
"Template":                   "TrackBrakeSimple",

"Maximum Torque":             10000
}



Driveline Subsystem
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ChTrackDriveline base class
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/// Base class for a tracked vehicle driveline.
class CH_VEHICLE_API ChTrackDriveline : public ChPart



Driveline Templates
Simple driveline
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JSON specification for simple track driveline
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{
"Name":                       "M113 Simple Driveline",
"Type":                       "TrackDriveline",
"Template":                   "SimpleTrackDriveline",

"Differential Max Bias":      1.0
}



Contact processing and monitoring
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Sprocket – track shoe (single-pin)
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Sprocket – track shoe (double-pin)
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Contact monitoring

• A ChTrackVehicle embeds a contact monitoring object of type ChTrackContactManager
• Maintains lists of contacts on the two sprockets, two idler wheels, and one track shoe 

from each track assembly
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/// Class for monitoring contacts of tracked vehicle subsystems.
class ChTrackContactManager : public chrono::ChReportContactCallback {
public:
ChTrackContactManager();

void MonitorContacts(int flags) { m_flags |= flags; }
void SetContactCollection(bool val) { m_collect = val; }
void WriteContacts(const std::string& filename);

void SetTrackShoeIndexLeft(size_t idx) { m_shoe_index_L = idx; }
void SetTrackShoeIndexRight(size_t idx) { m_shoe_index_R = idx; }

void Process(ChTrackedVehicle* vehicle);



Enabling contact monitoring

• ChTrackedVehicle methods:

• Example (flags can be OR-ed):

• Available flags:
SPROCKET_LEFT, SPROCKET_RIGHT, IDLER_LEFT, IDLER_RIGHT, SHOES_LEFT, SHOES_RIGHT
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/// Set contacts to be monitored.
/// Contact information will be tracked for the specified subsystems.
void MonitorContacts(int flags) { m_contacts->MonitorContacts(flags); }

/// Turn on/off contact data collection.
/// If enabled, contact information will be collected for all monitored subsystems.
void SetContactCollection(bool val) { m_contacts->SetContactCollection(val); }

vehicle.MonitorContacts(TrackCollide::SPROCKET_LEFT | TrackCollide::SHOES_LEFT | TrackCollide::IDLER_LEFT);
vehicle.SetContactCollection(true);



Monitoring contacts

• If enabled, contacts for the specified subsystems are rendered at run-time (Irrlicht):
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(slowed down 3x)






Monitoring contacts

• If data collection was enabled, contact information can be written to an output file

• Note: output not complete right now (WIP) 
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/// Write contact information to file.
/// If data collection was enabled and at least one subsystem is monitored,
/// contact information is written (in CSV format) to the specified file.
void WriteContacts(const std::string& filename) { m_contacts->WriteContacts(filename); }



Sample simulations
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M113 double-lane change (rigid terrain)
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M113 double-lane change (rigid terrain)
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M113 step climbing
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M113 step climbing

94



M113 slide slope object avoidance (SCM terrain)
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M113 slide slope object avoidance (SCM terrain)
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