
Chrono::Vehicle Tutorial
Tracked vehicle system

Data flow

VEHICLE

DRIVER POWERTRAIN

TERRAIN

Forces and moments on track shoe bodies

Track shoe states

Driveshaft
speed

Driveshaft
torque

Throttle input

Steering input
Braking input

2

VEHICLE
SYSTEM I/O

1D shaft element

3D rigid body

vehicle subsystem

3

Chassis

Steering subsystem

Body state

Driveshaft
torque

Idler / tensioner
subsystem

Steering

Body forces

Tension
forces

Trackpad forcesTrackpad states

Driveline
subsystem

Brake
torque

Brake
torque

Driveshaft
speed

Tension
forces

Track
subsystem

Track
subsystem

Roadwheel / suspension
subsystem

. . .

Sprocket
subsystem

Vehicle ISO reference frames

4

Y

X

Z

Y

X

Z

Z

X
Y

FRONT

REARRIGHT

LEFT

(XYZ) – vehicle (chassis) reference frame
(XYZ) – chassis COM reference frame
(XYZ) – right sprocket reference frame

ChTrackedVehicle base class

• A ChTrackedVehicle is a Chrono ChVehicle:

• A ChTrackedVehicle has:

5

/// Base class for chrono tracked vehicle systems.
/// This class provides the interface between the vehicle system and other
/// systems (terrain, driver, etc.)
class CH_VEHICLE_API ChWheeledVehicle : public ChVehicle

std::shared_ptr<ChTrackAssembly> m_tracks[2]; ///< handles to the track assemblies (left/right)
std::shared_ptr<ChTrackDriveline> m_driveline; ///< handle to the driveline subsystem

ChTrackContactManager* m_contacts; ///< manager for internal contacts

ChTrackedVehicle base class accessors

• Deferring to its constituent subsystems as needed, a ChTrackedVehicle provides
accessors for:

• Vehicle subsystems
• States of the vehicle’s track shoe bodies
• Inherited accessors from ChVehicle

• A ChTrackedVehicle intermediates communication between other systems (e.g.,
powertrain, driver, etc.) and constituent subsystems (e.g., sprockets, driveline,
brakes, etc.)

6

ChTrackedVehicle base class virtual functions

• Synchronize the vehicle at a communication time with data from other systems

7

/// Update the state of this vehicle at the current time.
/// The vehicle system is provided the current driver inputs (throttle between
/// 0 and 1, steering between -1 and +1, braking between 0 and 1), the torque
/// from the powertrain, and tire forces (expressed in the global reference
/// frame).
void Synchronize(double time, ///< [in] current time

double steering, ///< [in] current steering input [-1,+1]
double braking, ///< [in] current braking input [0,1]
double powertrain_torque, ///< [in] input torque from powertrain
const TrackShoeForces& shoe_forces_left, ///< [in] vector of track shoe forces (left side)
const TrackShoeForces& shoe_forces_right ///< [in] vector of track shoe forces (left side)
);

Data exchange structures

• TrackShoeForce structure – encapsulates external forces applied to a track shoe body
• Force vector and application point (expressed in the global reference frame)
• Moment vector (expressed in the global reference frame)

• A track shoe force structure can be specified for any (or all) track shoes (e.g., to model
track-terrain contact forces)

• The force and moment are applied to the track shoe body as external forces

8

/// Structure to communicate a set of generalized track shoe forces.
struct TrackShoeForce {

ChVector<> force; ///< force vector, epxressed in the global frame
ChVector<> point; ///< global location of the force application point
ChVector<> moment; ///< moment vector, expressed in the global frame

};

JSON specification file for a tracked vehicle

9

JSON file with chassis specification
(relative to the root of the data directory)

System type (string)

Template type (string)

{
"Name": "M113 vehicle",
"Type": "Vehicle",
"Template": "TrackedVehicle",

"Chassis":
{
"Input File": "M113/chassis/M113_Chassis.json"

},

"Track Assemblies":
[
{
"Input File": "M113/track_assembly/M113_TrackAssemblySinglePin_Left.json",
"Offset": 1.0795

},

{
"Input File": "M113/track_assembly/M113_TrackAssemblySinglePin_Right.json",
"Offset": -1.0795

}
],

"Driveline":
{
"Input File": "M113/driveline/M113_SimpleTrackDriveline.json"

}
}

JSON file with left track assembly specification
(relative to the root of the data directory)

JSON file with driveline specification
(relative to the root of the data directory)

Lateral (Y-direction) offset of left track

Tracked vehicle subsystem hierarchy

10

Tracked vehicle

Chassis Left track assembly Right track assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel assembly)

Road-wheel

Track-shoe

Driveline

Brake

Subsystem dependencies

• Sprocket ↔ track-shoe
• Sprocket type and track-shoe type must match:

• “single-pin”
• “double-pin”

• Contact between sprocket and track shoes is implemented through a custom callback which
assumes consistency

• Sprocket/Idler/road-wheel ↔ track-shoe
• Wheel type and track-shoe type must match:

• “single-wheel” and “lateral guiding pin”
• “double-wheel” and “central guiding pin”

• Note: track shoes with lateral guiding pins currently not implemented

11

Track Assembly Subsystem

12

Tracked vehicle

Chassis
Left track
assembly

Right track
assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel
assembly)

Road-wheel

Track-shoe

Driveline

Brake

ChTrackAssembly base class

• ChTrackAssembly is a composite class, used to manage all subsystems comprising
a (left or right) track assembly:

• A sprocket and brake
• An idler assembly (idler wheel + tensioner mechanism)
• A set of suspensions (each containing a road-wheel)
• A set of track shoes

• Derived classes ensure consistency between subsystem types
• ChTrackAssembly provides the algorithm for assembling the track shoes around

the wheels (sprocket, idler, road-wheels)

13

/// Definition of a track assembly.
/// A track assembly consists of a sprocket, an idler (with tensioner mechanism),
/// a set of suspensions (road-wheel assemblies), and a collection of track shoes.
class CH_VEHICLE_API ChTrackAssembly : public ChPart

ChTrackAssembly class members

• A ChTrackAssembly has:

• Derived classes (track assembly templates) manage the sprocket and track shoes
of appropriate types

14

VehicleSide m_side; ///< assembly on left/right vehicle side
std::shared_ptr<ChIdler> m_idler; ///< idler (and tensioner) subsystem
std::shared_ptr<ChTrackBrake> m_brake; ///< sprocket brake
ChRoadWheelAssemblyList m_suspensions; ///< road-wheel assemblies

ChTrackAssembly base class accessors

• A ChTrackAssembly provides access to:
• Its constituent subsystems (sprocket, brake, idler, suspensions, individual track shoes)

• Sprocket and track shoe access provided through pure virtual methods
• Relative positions of its constituent subsystems

• The ISO track assembly reference frame is assumed to have origin at the center of the sprocket
• Complete state of a track shoe subsystem (through its index in the vector of track shoes in the

assembly)
• Cumulative mass of the track assembly

15

ChTrackAssembly base class methods

• A ChTrackAssembly provides methods to:

16

/// Initialize this track assembly subsystem.
/// The subsystem is initialized by attaching it to the specified chassis body
/// at the specified location (with respect to and expressed in the reference
/// frame of the chassis). It is assumed that the track assembly reference frame
/// is always aligned with the chassis reference frame.
void Initialize(std::shared_ptr<ChBodyAuxRef> chassis, ///< [in] handle to the chassis body

const ChVector<>& location ///< [in] location relative to the chassis frame
);

/// Update the state of this track assembly at the current time.
void Synchronize(double time, ///< [in] current time

double braking, ///< [in] braking driver input
const TrackShoeForces& shoe_forces ///< [in] vector of tire force structures
);

ChTrackAssembly base class virtual methods

• A derived class must provide a method for assembling track shoes around the assembly’s
wheels

• Track shoes are positioned from below the sprocket, clockwise or counter-clockwise,
depending on whether the assembly has a front or rear sprocket

• Note that this process is relatively fragile
• May require adjustments to initial idler position

17

/// Assemble track shoes over wheels.
/// Return true if the track shoes were initialized in a counter clockwise
/// direction and false otherwise.
virtual bool Assemble(std::shared_ptr<ChBodyAuxRef> chassis) = 0;

Track Assembly Templates
Single-pin

18

19

JSON specification for single-pin track assembly (1/2)

20

{
"Name": "M113 SinglePin TrackAssembly Left",
"Type": "TrackAssembly",
"Template": "TrackAssemblySinglePin",

"Sprocket":
{

"Input File": "M113/sprocket/M113_SprocketSinglePin_Left.json",
"Location": [0, 0, 0]

},

"Brake":
{

"Input File": "M113/brake/M113_TrackBrakeSimple.json"
},

"Idler":
{

"Input File": "M113/idler/M113_DoubleIdler_Left.json",
"Location": [-3.83, 0, -0.12]

},

"Track Shoes":
{

"Input File": "M113/track_shoe/M113_TrackShoeSinglePin.json",
"Number Shoes": 63

},

System type (string)

Template type (string)

Location of sprocket subsystem
with respect to assembly reference frame

Location of idler subsystem
with respect to assembly reference frame

JSON specification for single-pin track assembly (2/2)

21

"Suspension Subsystems":
[
{

"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": true,
"Location": [-0.655, 0, -0.215]

},

{
"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": true,
"Location": [-1.322, 0, -0.215]

},

{
"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": false,
"Location": [-1.989, 0, -0.215]

},

{
"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": false,
"Location": [-2.656, 0, -0.215]

},

{
"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": true,
"Location": [-3.322, 0, -0.215]

}
]

}

Location of first (front) suspension subsystem
with respect to assembly reference frame

Track Assembly Templates
Double-pin

22

23

JSON specification for double-pin track assembly (1/2)

24

{
"Name": "M113 DoublePin TrackAssembly Left",
"Type": "TrackAssembly",
"Template": "TrackAssemblyDoublePin",

"Sprocket":
{

"Input File": "M113/sprocket/M113_SprocketDoublePin_Left.json",
"Location": [0, 0, 0]

},

"Brake":
{

"Input File": "M113/brake/M113_TrackBrakeSimple.json"
},

"Idler":
{

"Input File": "M113/idler/M113_DoubleIdler_Left.json",
"Location": [-3.83, 0, -0.12]

},

"Track Shoes":
{

"Input File": "M113/track_shoe/M113_TrackShoeDoublePin.json",
"Number Shoes": 63

},

JSON specification for double-pin track assembly (2/2)

25

"Suspension Subsystems":
[
{

"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": true,
"Location": [-0.655, 0, -0.215]

},

{
"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": true,
"Location": [-1.322, 0, -0.215]

},

{
"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": false,
"Location": [-1.989, 0, -0.215]

},

{
"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": false,
"Location": [-2.656, 0, -0.215]

},

{
"Input File": "M113/suspension/M113_LinearDamperSuspension_Left.json",
"Has Shock": true,
"Location": [-3.322, 0, -0.215]

}
]

}

Suspension Subsystem

26

Tracked vehicle

Chassis
Left track
assembly

Right track
assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel
assembly)

Road-wheel

Track-shoe

Driveline

Brake

ChRoadWheelAssembly base class

• Base class for track suspension subsystems
• Provides access to the underlying road-wheel subsystem and its components

(body and revolute joint)

27

/// Base class for tracked vehicle suspension (road-wheel assembly) subsystem.
class CH_VEHICLE_API ChRoadWheelAssembly : public ChPart

ChRoadWheelAssembly class members

• A ChRoadWheelAssembly has:

28

GuidePinType m_type; ///< type of the track shoe matching this road wheel
std::shared_ptr<ChRoadWheel> m_road_wheel; ///< road-wheel subsystem

Suspension Templates
Linear-damper suspension

29

30

Arm Linear damper

Road-wheel

(front)

Template specification

31

z

y
x

Road-wheel
Linear damper

Revolute joint (arm-chassis)
with rotational spring

Revolute joint
(arm-wheel)

Suspension arm

Components Hard points

Arm COM

JSON specification for linear-damper suspension

32

{
"Name": "M113 Linear Damper Suspension Left",
"Type": "RoadWheelAssembly",
"Template": "LinearDamperRWAssembly",

"Suspension Arm":
{

"Mass": 75.26,
"COM": [0.144, -0.12, 0.067],
"Inertia": [0.37, 0.77, 0.77],
"Location Chassis": [0.288, -0.12, 0.134],
"Location Wheel": [0, -0.12, 0],
"Radius": 0.03

},

"Torsional Spring":
{

"Spring Constant": 2.5e4,
"Damping Coefficient": 5e2,
"Preload": -1e4

},

"Damper":
{

"Location Chassis": [-0.3, -0.12, 0.3],
"Location Arm": [0.184, -0.12, -0.106],
"Damping Coefficient": 1e2

},

"Road Wheel Input File": "M113/road_wheel/M113_DoubleRoadWheel_Left.json"
}

Suspension Templates
Rotational-damper suspension

33

Template specification

34

z

y
x

Road-wheel
Rotational damperRevolute joint (arm-chassis)

with rotational spring

Revolute joint
(arm-wheel)

Suspension arm

Components Hard points

Arm COM

Suspension Templates
Hydropneumatic suspension

35

Template specification

36

x

z

𝛼𝛼

𝜃𝜃𝜉𝜉𝑑𝑑

𝑙𝑙

𝑟𝑟

⨁

𝛼𝛼

Note: WIP

Road-wheel Subsystem

37

Tracked vehicle

Chassis
Left track
assembly

Right track
assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel
assembly)

Road-wheel

Track-shoe

Driveline

Brake

ChRoadWheel base class

• A road wheel is a single rigid body with contact shape specified by a concrete
subsystem template class

• Member variables

38

/// Base class for a road wheel subsystem.
class CH_VEHICLE_API ChRoadWheel : public ChPart

std::shared_ptr<ChBody> m_wheel; ///< handle to the road wheel body
std::shared_ptr<ChLinkLockRevolute> m_revolute; ///< handle to wheel revolute joint

float m_friction; ///< contact coefficient of friction
float m_restitution; ///< contact coefficient of restitution
float m_young_modulus; ///< contact material Young modulus
float m_poisson_ratio; ///< contact material Poisson ratio
float m_kn; ///< normal contact stiffness
float m_gn; ///< normal contact damping
float m_kt; ///< tangential contact stiffness
float m_gt; ///< tangential contact damping

ChRoadWheel class members

• A ChRoadWheel has:

39

std::shared_ptr<ChBody> m_wheel; ///< handle to the road wheel body
std::shared_ptr<ChLinkLockRevolute> m_revolute; ///< handle to wheel revolute joint

float m_friction; ///< contact coefficient of friction
float m_restitution; ///< contact coefficient of restitution
float m_young_modulus; ///< contact material Young modulus
float m_poisson_ratio; ///< contact material Poisson ratio
float m_kn; ///< normal contact stiffness
float m_gn; ///< normal contact damping
float m_kt; ///< tangential contact stiffness
float m_gt; ///< tangential contact damping

ChRoadWheel base class accessor methods

40

/// Get a handle to the road wheel body.
std::shared_ptr<ChBody> GetWheelBody() const { return m_wheel; }

/// Get a handle to the revolute joint.
std::shared_ptr<ChLinkLockRevolute> GetRevolute() const { return m_revolute; }

/// Return the mass of the road wheel body.
virtual double GetWheelMass() const = 0;

/// Return the moments of inertia of the road wheel body.
virtual const ChVector<>& GetWheelInertia() = 0;

/// Get the radius of the road wheel.
virtual double GetWheelRadius() const = 0;

/// Get coefficient of friction for contact material.
float GetCoefficientFriction() const { return m_friction; }
/// Get coefficient of restitution for contact material.
float GetCoefficientRestitution() const { return m_restitution; }
/// Get Young's modulus of elasticity for contact material.
float GetYoungModulus() const { return m_young_modulus; }
/// Get Poisson ratio for contact material.
float GetPoissonRatio() const { return m_poisson_ratio; }
/// Get normal stiffness coefficient for contact material.
float GetKn() const { return m_kn; }
/// Get tangential stiffness coefficient for contact material.
float GetKt() const { return m_kt; }
/// Get normal viscous damping coefficient for contact material.
float GetGn() const { return m_gn; }
/// Get tangential viscous damping coefficient for contact material.
float GetGt() const { return m_gt; }

ChRoadWheel base class methods

41

/// Set coefficient of friction.
/// The default value is 0.7
void SetContactFrictionCoefficient(float friction_coefficient) { m_friction = friction_coefficient; }
/// Set coefficient of restiturion.
/// The default value is 0.1
void SetContactRestitutionCoefficient(float restitution_coefficient) { m_restitution = restitution_coefficient; }
/// Set contact material properties.
/// These values are used to calculate contact material coefficients (if the containing
/// system is so configured and if the DEM-P contact method is being used).
/// The default values are: Y = 1e8 and nu = 0.3
void SetContactMaterialProperties(float young_modulus, ///< [in] Young's modulus of elasticity

float poisson_ratio ///< [in] Poisson ratio
);

/// Set contact material coefficients.
/// These values are used directly to compute contact forces (if the containing system
/// is so configured and if the DEM-P contact method is being used).
/// The default values are: kn=2e5, gn=40, kt=2e5, gt=20
void SetContactMaterialCoefficients(float kn, ///< [in] normal contact stiffness

float gn, ///< [in] normal contact damping
float kt, ///< [in] tangential contact stiffness
float gt ///< [in] tangential contact damping
);

/// Initialize this road wheel subsystem.
/// The road wheel subsystem is initialized by attaching it to the specified
/// carrier body at the specified location (with respect to and expressed in the
/// reference frame of the chassis).
/// A derived road wheel subsystem template class must extend this default
/// implementation and specify contact geometry for the road wheel.
virtual void Initialize(std::shared_ptr<ChBodyAuxRef> chassis, ///< [in] handle to the chassis body

std::shared_ptr<ChBody> carrier, ///< [in] handle to the carrier body
const ChVector<>& location ///< [in] location relative to the chassis frame
);

Road-wheel Templates
Double road-wheel

42

ChDoubleRoadWheel geometry

43

gap

width

radius

JSON specification for double road-wheel

44

{
"Name": "M113 Double RoadWheel Left",
"Type": "RoadWheel",
"Template": "DoubleRoadWheel",

"Wheel":
{

"Radius": 0.305,
"Width": 0.181,
"Gap": 0.051,
"Mass": 561.1,
"Inertia": [19.82, 26.06, 19.82]

},

"Contact Material":
{

"Coefficient of Friction": 0.7,
"Coefficient of Restitution": 0.1,
"Properties": {

"Young Modulus": 1e7,
"Poisson Ratio": 0.3

},
"Coefficients": {

"Normal Stiffness": 2e5,
"Normal Damping": 40.0,
"Tangential Stiffness": 2e5,
"Tangential Damping": 20.0

}
},

"Visualization":
{

"Mesh Filename": "M113/Roller_L.obj",
"Mesh Name": "Roller_L_POV_geom"

}
}

Sprocket Subsystem

45

Tracked vehicle

Chassis
Left track
assembly

Right track
assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel
assembly)

Road-wheel

Track-shoe

Driveline

Brake

ChSprocket base class

• A sprocket is responsible for collision detection and contact processing between
the sprocket and the track shoes

• A derived class which implements a particular sprocket template must specify the
custom collision callback object and provide the gear profile as a 2D path.

• The gear profile, a ChLinePath geometric object, is made up of an arbitrary
number of sub-paths of type ChLineArc or ChLineSegment sub-lines.

• These must be added in clockwise order, and the end of sub-path i must be
coincident with beginning of sub-path i+1.

46

/// Base class for a tracked vehicle sprocket.
/// A sprocket is responsible for contact processing with the track shoes of the containing track assembly.
class CH_VEHICLE_API ChSprocket : public ChPart

ChSprocket class members

• A ChSprocket has:

47

std::shared_ptr<ChBody> m_gear; ///< handle to the sprocket gear body
std::shared_ptr<ChShaft> m_axle; ///< handle to gear shafts
std::shared_ptr<ChShaftsBody> m_axle_to_spindle; ///< handle to gear-shaft connector
std::shared_ptr<ChLinkLockRevolute> m_revolute; ///< handle to sprocket revolute joint

ChSystem::ChCustomComputeCollisionCallback* m_callback; ///< custom collision functor object

float m_friction; ///< contact coefficient of friction
float m_restitution; ///< contact coefficient of restitution
float m_young_modulus; ///< contact material Young modulus
float m_poisson_ratio; ///< contact material Poisson ratio
float m_kn; ///< normal contact stiffness
float m_gn; ///< normal contact damping
float m_kt; ///< tangential contact stiffness
float m_gt; ///< tangential contact damping

Sprocket Templates
Single-pin sprocket

48

ChSprocketSinglePin geometry

49

arc radius

JSON specification for single-pin sprocket (1/2)

50

{
"Name": "M113 SinglePin Sprocket Left",
"Type": "Sprocket",
"Template": "SprocketSinglePin",

"Number Teeth": 10,
"Gear Mass": 436.7,
"Gear Inertia": [12.22, 13.87, 12.22],
"Axle Inertia": 1.0,
"Gear Separation": 0.225,

"Profile":
{

"Addenum Radius": 0.2605,
"Arc Radius": 0.089,
"Arc Centers Radius": 0.3,
"Assembly Radius": 0.245

},

JSON specification for single-pin sprocket (2/2)

51

"Contact Material":
{

"Coefficient of Friction": 0.4,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus": 1e7,
"Poisson Ratio": 0.3

},

"Coefficients": {
"Normal Stiffness": 2e5,
"Normal Damping": 40.0,
"Tangential Stiffness": 2e5,
"Tangential Damping": 20.0

}
},

"Visualization":
{

"Mesh Filename": "M113/Sprocket_L.obj",
"Mesh Name": "Sprocket_L_POV_geom"

}
}

Sprocket Templates
Double-pin sprocket

52

ChSprocketDoublePin geometry

53

arc radius

JSON specification for double-pin sprocket (1/2)

54

{
"Name": "M113 DoublePin Sprocket Left",
"Type": "Sprocket",
"Template": "SprocketDoublePin",

"Number Teeth": 10,
"Gear Mass": 436.7,
"Gear Inertia": [12.22, 13.87, 12.22],
"Axle Inertia": 1.0,
"Gear Separation": 0.225,

"Profile":
{

"Addenum Radius": 0.2715,
"Arc Radius": 0.0223,
"Assembly Radius": 0.242,
"Arc Center Height": 0.2371,
"Arc Center Offset": 0.0464

},

Outer radius

Arc radius

Height

Offset

JSON specification for double-pin sprocket (2/2)

55

"Contact Material":
{

"Coefficient of Friction": 0.4,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus": 1e7,
"Poisson Ratio": 0.3

},

"Coefficients": {
"Normal Stiffness": 2e5,
"Normal Damping": 40.0,
"Tangential Stiffness": 2e5,
"Tangential Damping": 20.0

}
}

}

Track-shoe Subsystem

56

Tracked vehicle

Chassis
Left track
assembly

Right track
assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel
assembly)

Road-wheel

Track-shoe

Driveline

Brake

ChTrackShoe base class

• Specifies the interface for the track shoe subsystem
• Provides the contact material properties
• A derived class must implement:

• a method to initialize the track shoe subsystem at a given location and with a given
orientation

• a method to connect two adjacent track shoes (always assumed to have proper relative
positions)

57

/// Base class for a track shoe.
class CH_VEHICLE_API ChTrackShoe : public ChPart

ChTrackShoe class members

• A ChTrackShoe has:

58

size_t m_index; ///< index of this track shoe within its containing track assembly
std::shared_ptr<ChBody> m_shoe; ///< handle to the shoe body

float m_friction; ///< contact coefficient of friction
float m_restitution; ///< contact coefficient of restitution
float m_young_modulus; ///< contact material Young modulus
float m_poisson_ratio; ///< contact material Poisson ratio
float m_kn; ///< normal contact stiffness
float m_gn; ///< normal contact damping
float m_kt; ///< tangential contact stiffness
float m_gt; ///< tangential contact damping

Track-shoe Templates
Single-pin track-shoe

59

ChTrackShoeSinglePin geometry

60

• Single-pin, single-body track shoe
• Central guiding pin (i.e. consistent with ChDoubleIdler, ChDoubleRoadWheel)
• Connection to adjacent track shoe is through revolute joints (except the track

loop closure)

JSON specification for single-pin track-shoe (1/2)

61

{
"Name": "M113 SinglePin TrackShoe Left",
"Type": "TrackShoe",
"Template": "TrackShoeSinglePin",

"Shoe":
{

"Height": 0.06,
"Pitch": 0.154,
"Mass": 18.02,
"Inertia": [0.22, 0.04, 0.25]

},

"Contact Geometry":
{

"Shoe":
{

"Pad Dimensions": [0.11, 0.19, 0.06],
"Pad Location": [0, 0, 0],
"Guide Dimensions": [0.0284, 0.0114, 0.075],
"Guide Location": [0.045, 0, 0.0375]

},

"Cylinder":
{

"Radius": 0.015,
"Front Offset": 0.0535,
"Rear Offset": -0.061

}
},

JSON specification for single-pin track-shoe (2/2)

62

"Contact Material":
{

"Coefficient of Friction": 0.8,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus": 1e7,
"Poisson Ratio": 0.3

},

"Coefficients": {
"Normal Stiffness": 2e5,
"Normal Damping": 40.0,
"Tangential Stiffness": 2e5,
"Tangential Damping": 20.0

}
},

"Visualization":
{

"Mesh Filename": "M113/TrackShoe.obj",
"Mesh Name": "TrackShoe_POV_geom"

}
}

Track-shoe Templates
Double-pin track-shoe

63

ChTrackShoeDoublePin geometry

64

• Double-pin, single-body track shoe
• Central guiding pin (i.e. consistent with ChDoubleIdler, ChDoubleRoadWheel)
• Connection to adjacent track shoe is through spherical joints (except the track

loop closure)
• Revolute joints between shoe body and connector bodies

JSON specification for double-pin track-shoe (1/2)

65

{
"Name": "M113 DoublePin TrackShoe Left",
"Type": "TrackShoe",
"Template": "TrackShoeDoublePin",

"Shoe":
{

"Length": 0.0984,
"Width": 0.2781,
"Height": 0.06,
"Mass": 18.02,
"Inertia": [0.22, 0.04, 0.25]

},

"Connector":
{

"Radius": 0.02,
"Length": 0.054,
"Width": 0.02,
"Mass": 2.0,
"Inertia": [0.1, 0.1, 0.1]

},

"Contact Geometry":
{

"Shoe":
{

"Pad Dimensions": [0.11, 0.19, 0.06],
"Pad Location": [0, 0, 0],
"Guide Dimensions": [0.0284, 0.0114, 0.075],
"Guide Location": [0.045, 0, 0.0375]

}
},

JSON specification for double-pin track-shoe (2/2)

66

"Contact Material":
{

"Coefficient of Friction": 0.8,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus": 1e7,
"Poisson Ratio": 0.3

},

"Coefficients": {
"Normal Stiffness": 2e5,
"Normal Damping": 40.0,
"Tangential Stiffness": 2e5,
"Tangential Damping": 20.0

}
}

}

Idler Subsystem

67

Tracked vehicle

Chassis
Left track
assembly

Right track
assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel
assembly)

Road-wheel

Track-shoe

Driveline

Brake

ChIdler base class

• An idler subsystem consists of the idler wheel and a connecting body.
• The idler wheel is connected through a revolute joint to the connecting body

which in turn is connected to the chassis through a translational joint.
• A linear actuator acts as a tensioner.

• An idler subsystem is defined with respect to a frame centered at the origin of the
idler wheel, possibly pitched relative to the chassis reference frame.

• The translational joint is aligned with the x axis of this reference frame, while the
axis of rotation of the revolute joint is aligned with its y axis.

68

/// Base class for an idler subsystem.
/// An idler consists of the idler wheel and a connecting body. The idler wheel is connected
/// through a revolute joint to the connecting body which in turn is connected to the chassis
/// through a translational joint. A linear actuator acts as a tensioner.
class CH_VEHICLE_API ChIdler : public ChPart

ChIdler class members

• A ChIdler has:

69

std::shared_ptr<ChBody> m_wheel; ///< handle to the idler wheel body
std::shared_ptr<ChBody> m_carrier; ///< handle to the carrier body
std::shared_ptr<ChLinkLockRevolute> m_revolute; ///< handle to wheel-carrier revolute joint
std::shared_ptr<ChLinkLockPrismatic> m_prismatic; ///< handle to carrier-chassis translational joint
std::shared_ptr<ChLinkSpringCB> m_tensioner; ///< handle to the TSDA tensioner element

float m_friction; ///< contact coefficient of friction
float m_restitution; ///< contact coefficient of restitution
float m_young_modulus; ///< contact material Young modulus
float m_poisson_ratio; ///< contact material Poisson ratio
float m_kn; ///< normal contact stiffness
float m_gn; ///< normal contact damping
float m_kt; ///< tangential contact stiffness
float m_gt; ///< tangential contact damping

Idler Templates
Double idler

70

ChDoubleIdler geometry

71

gap

width

radius

JSON specification for double idler (1/2)

72

{
"Name": "M113 Double Idler Left",
"Type": "Idler",
"Template": "DoubleIdler",

"Wheel":
{

"Radius": 0.255,
"Width": 0.181,
"Gap": 0.051,
"Mass": 429.5,
"COM": [0, 0, 0],
"Inertia": [12.55, 14.70, 12.55]

},

"Carrier":
{

"Mass": 50.0,
"COM": [0, -0.1, 0],
"Inertia": [2, 2, 2],
"Location Chassis": [0, -0.2, 0],
"Visualization Radius": 0.02,
"Pitch Angle": 0

},

"Tensioner":
{
"Location Carrier": [0, -0.2, 0],
"Location Chassis": [0.5, -0.2, 0],
"Preload": 2e4,
"Free Length": 0.75,
"Spring Coefficient": 1e6,
"Damping Coefficient": 1.4e4

},

JSON specification for double idler (2/2)

73

"Contact Material":
{

"Coefficient of Friction": 0.7,
"Coefficient of Restitution": 0.1,

"Properties": {
"Young Modulus": 1e8,
"Poisson Ratio": 0.3

},

"Coefficients": {
"Normal Stiffness": 2e5,
"Normal Damping": 40.0,
"Tangential Stiffness": 2e5,
"Tangential Damping": 20.0

}
},

"Visualization":
{

"Mesh Filename": "M113/Idler_L.obj",
"Mesh Name": "Idler_L_POV_geom"

}
}

Brake Subsystem

74

Tracked vehicle

Chassis
Left track
assembly

Right track
assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel
assembly)

Road-wheel

Track-shoe

Driveline

Brake

ChTrackBrake base class

• Defines the common interface for any brake subsystem
• All classes defining particular brake templates inherit from ChTrackBrake

75

///
/// Base class for a track brake subsystem
///
class CH_VEHICLE_API ChTrackBrake : public ChPart

Brake Templates
Simple track brake

76

ChTrackBrakeSimple

• Simple brake model using a constant torque opposing sprocket rotation.
• Uses a speed-dependent torque
• It cannot simulate sticking
• On initialization, it is associated with a revolute joint connecting the sprocket gear body
• Has a single parameter, the maximum braking torque

77

JSON specification file for TrackBrakeSimple

78

Subsystem type (string)

Template type (string)

Maximum braking torque in Nm (double)

{
"Name": "M113 Siple Brake",
"Type": "TrackBrake",
"Template": "TrackBrakeSimple",

"Maximum Torque": 10000
}

Driveline Subsystem

79

Tracked vehicle

Chassis
Left track
assembly

Right track
assembly

Sprocket Idler
(with tensioner)

Suspension
(road-wheel
assembly)

Road-wheel

Track-shoe

Driveline

Brake

ChTrackDriveline base class

80

/// Base class for a tracked vehicle driveline.
class CH_VEHICLE_API ChTrackDriveline : public ChPart

Driveline Templates
Simple driveline

81

JSON specification for simple track driveline

82

{
"Name": "M113 Simple Driveline",
"Type": "TrackDriveline",
"Template": "SimpleTrackDriveline",

"Differential Max Bias": 1.0
}

Contact processing and monitoring

83

Sprocket – track shoe (single-pin)

84

Sprocket – track shoe (double-pin)

85

Contact monitoring

• A ChTrackVehicle embeds a contact monitoring object of type ChTrackContactManager
• Maintains lists of contacts on the two sprockets, two idler wheels, and one track shoe

from each track assembly

86

/// Class for monitoring contacts of tracked vehicle subsystems.
class ChTrackContactManager : public chrono::ChReportContactCallback {
public:
ChTrackContactManager();

void MonitorContacts(int flags) { m_flags |= flags; }
void SetContactCollection(bool val) { m_collect = val; }
void WriteContacts(const std::string& filename);

void SetTrackShoeIndexLeft(size_t idx) { m_shoe_index_L = idx; }
void SetTrackShoeIndexRight(size_t idx) { m_shoe_index_R = idx; }

void Process(ChTrackedVehicle* vehicle);

Enabling contact monitoring

• ChTrackedVehicle methods:

• Example (flags can be OR-ed):

• Available flags:
SPROCKET_LEFT, SPROCKET_RIGHT, IDLER_LEFT, IDLER_RIGHT, SHOES_LEFT, SHOES_RIGHT

87

/// Set contacts to be monitored.
/// Contact information will be tracked for the specified subsystems.
void MonitorContacts(int flags) { m_contacts->MonitorContacts(flags); }

/// Turn on/off contact data collection.
/// If enabled, contact information will be collected for all monitored subsystems.
void SetContactCollection(bool val) { m_contacts->SetContactCollection(val); }

vehicle.MonitorContacts(TrackCollide::SPROCKET_LEFT | TrackCollide::SHOES_LEFT | TrackCollide::IDLER_LEFT);
vehicle.SetContactCollection(true);

Monitoring contacts

• If enabled, contacts for the specified subsystems are rendered at run-time (Irrlicht):

88
(slowed down 3x)

Monitoring contacts

• If data collection was enabled, contact information can be written to an output file

• Note: output not complete right now (WIP)

89

/// Write contact information to file.
/// If data collection was enabled and at least one subsystem is monitored,
/// contact information is written (in CSV format) to the specified file.
void WriteContacts(const std::string& filename) { m_contacts->WriteContacts(filename); }

Sample simulations

90

M113 double-lane change (rigid terrain)

91

M113 double-lane change (rigid terrain)

92

M113 step climbing

93

M113 step climbing

94

M113 slide slope object avoidance (SCM terrain)

95

M113 slide slope object avoidance (SCM terrain)

96

	Chrono::Vehicle Tutorial
	Data flow
	Slide Number 3
	Vehicle ISO reference frames
	ChTrackedVehicle base class
	ChTrackedVehicle base class accessors
	ChTrackedVehicle base class virtual functions
	Data exchange structures
	JSON specification file for a tracked vehicle
	Tracked vehicle subsystem hierarchy
	Subsystem dependencies
	Track Assembly Subsystem
	ChTrackAssembly base class
	ChTrackAssembly class members
	ChTrackAssembly base class accessors
	ChTrackAssembly base class methods
	ChTrackAssembly base class virtual methods
	Track Assembly Templates
	Slide Number 19
	JSON specification for single-pin track assembly (1/2)
	JSON specification for single-pin track assembly (2/2)
	Track Assembly Templates
	Slide Number 23
	JSON specification for double-pin track assembly (1/2)
	JSON specification for double-pin track assembly (2/2)
	Suspension Subsystem
	ChRoadWheelAssembly base class
	ChRoadWheelAssembly class members
	Suspension Templates
	Slide Number 30
	Template specification
	JSON specification for linear-damper suspension
	Suspension Templates
	Template specification
	Suspension Templates
	Template specification
	Road-wheel Subsystem
	ChRoadWheel base class
	ChRoadWheel class members
	ChRoadWheel base class accessor methods
	ChRoadWheel base class methods
	Road-wheel Templates
	ChDoubleRoadWheel geometry
	JSON specification for double road-wheel
	Sprocket Subsystem
	ChSprocket base class
	ChSprocket class members
	Sprocket Templates
	ChSprocketSinglePin geometry
	JSON specification for single-pin sprocket (1/2)
	JSON specification for single-pin sprocket (2/2)
	Sprocket Templates
	ChSprocketDoublePin geometry
	JSON specification for double-pin sprocket (1/2)
	JSON specification for double-pin sprocket (2/2)
	Track-shoe Subsystem
	ChTrackShoe base class
	ChTrackShoe class members
	Track-shoe Templates
	ChTrackShoeSinglePin geometry
	JSON specification for single-pin track-shoe (1/2)
	JSON specification for single-pin track-shoe (2/2)
	Track-shoe Templates
	ChTrackShoeDoublePin geometry
	JSON specification for double-pin track-shoe (1/2)
	JSON specification for double-pin track-shoe (2/2)
	Idler Subsystem
	ChIdler base class
	ChIdler class members
	Idler Templates
	ChDoubleIdler geometry
	JSON specification for double idler (1/2)
	JSON specification for double idler (2/2)
	Brake Subsystem
	ChTrackBrake base class
	Brake Templates
	ChTrackBrakeSimple
	JSON specification file for TrackBrakeSimple
	Driveline Subsystem
	ChTrackDriveline base class
	Driveline Templates
	JSON specification for simple track driveline
	Contact processing and monitoring
	Sprocket – track shoe (single-pin)
	Sprocket – track shoe (double-pin)
	Contact monitoring
	Enabling contact monitoring
	Monitoring contacts
	Monitoring contacts
	Sample simulations
	M113 double-lane change (rigid terrain)
	M113 double-lane change (rigid terrain)
	M113 step climbing
	M113 step climbing
	M113 slide slope object avoidance (SCM terrain)
	M113 slide slope object avoidance (SCM terrain)

