
Chrono::Vehicle Tutorial
Wheeled vehicle system

1

TERRAIN

Data flow

2

VEHICLE

DRIVER POWERTRAIN

TIRES

Forces and moments on wheel bodies

Wheel states

Driveshaft
speed

Driveshaft
torque

Throttle input

Steering input
Braking input

VEHICLE
SYSTEM I/O

1D shaft element

3D rigid body

shaft – body connector

vehicle subsystem

3

Chassis

Steering subsystem

Body state

Driveshaft
torque

Front suspension
subsystem

Rear suspension
subsystem

Tire forcesWheel state

Steering

Body forces

Tire forcesWheel state

Tire forcesWheel state Tire forcesWheel state

Driveline
subsystem

Driveshaft
speed

Brake torqueBrake torque

Brake torque Brake torque

Chassis

Steering subsystem

Front suspension
subsystem

Rear suspension
subsystem

VEHICLE
SYSTEM CONNECTIONS

vehicle subsystem

4

Driveline
subsystem

other system

EnvironmentDriver Power
train

Brake Brake

Brake Brake

Tire Tire

Tire Tire

Chassis

Steering subsystem

Front suspension
subsystem

Rear suspension
subsystem

5

Driveline
subsystem

VEHICLE
TEMPLATE PARAMETERS

chassis mass and inertia tensor

Location / orientation

concrete subsystem instance

Suspension
instance

Suspension
instance

Driveline
instance

Steering
instance

Vehicle ISO reference frames

6

Y
X

Z

Y
X

Z

Y
X

Z

Z

X
Y

FRONT

REAR

RIGHT

LEFT

(XYZ) – chassis reference frame
(XYZ) – suspension reference frame
(XYZ) – steering reference frame

ChWheeledVehicle base class

• A ChWheeledVehicle is a Chrono ChVehicle:

• A ChWheeledVehicle has:

7

/// Base class for chrono wheeled vehicle systems.
/// This class provides the interface between the vehicle system and other
/// systems (tires, driver, etc.).
/// The reference frame for a vehicle follows the ISO standard: Z-axis up, X-axis
/// pointing forward, and Y-axis towards the left of the vehicle.
class CH_VEHICLE_API ChWheeledVehicle : public ChVehicle

ChSuspensionList m_suspensions; ///< list of handles to suspension subsystems
ChAntirollbarList m_antirollbars; ///< list of handles to antirollbar subsystems (optional)
std::shared_ptr<ChDriveline> m_driveline; ///< handle to the driveline subsystem
ChSteeringList m_steerings; ///< list of handles to steering subsystems
ChWheelList m_wheels; ///< list of handles to wheel subsystems
ChBrakeList m_brakes; ///< list of handles to brake subsystems

ChWheeledVehicle base class accessors

• Deferring to its constituent subsystems as needed, a ChWheeledVehicle provides
accessors for:

• Vehicle subsystems
• States of the vehicle’s wheel bodies (the suspension spindle bodies)
• Inherits all accessors from ChVehicle

• A ChWheeledVehicle intermediates communication between other systems (e.g.,
tires, driver, etc.) and constituent subsystems (e.g., suspensions, brakes, etc.)

8

ChWheeledVehicle base class virtual functions

• Synchronize the vehicle at a communication time with data from other systems

9

/// Synchronize the state of this vehicle at the current time.
/// The vehicle system is provided the current driver inputs (throttle between
/// 0 and 1, steering between -1 and +1, braking between 0 and 1), the torque
/// from the powertrain, and tire forces (expressed in the global reference
/// frame).
virtual void Synchronize(
double time, ///< [in] current time
double steering, ///< [in] current steering input [-1,+1]
double braking, ///< [in] current braking input [0,1]
double powertrain_torque, ///< [in] input torque from powertrain
const ChTireForces& tire_forces ///< [in] vector of tire force structures
) {}

Data exchange structures

• WheelID class – encodes the ID of a vehicle wheel
• By convention, wheels are counted front to rear and left to right

• For a vehicle with 2 axles, the order is: front-left, front-right, rear-left, rear-right

• A wheel ID encodes an axle number (0,1,2,…) and the vehicle side (0: left, 1: right)
𝑖𝑖𝑖𝑖 = 2 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑎𝑎

10

WheelID(int id) : m_id(id), m_axle(id / 2), m_side(VehicleSide(id % 2)) {}
WheelID(int axle, VehicleSide side) : m_id(2 * axle + side), m_axle(axle), m_side(side) {}

/// Return the wheel ID.
int id() const { return m_id; }

/// Return the axle index for this wheel ID.
/// Axles are counted from the front of the vehicle.
int axle() const { return m_axle; }

/// Return the side for this wheel ID.
/// By convention, left is 0 and right is 1.
VehicleSide side() const { return m_side; }

Data exchange structures

• BodyState structure – encapsulates the full state of a Chrono body
• Position – as a 3D vector
• Orientation – as a unitary quaternion
• Linear velocity (with respect to the global frame) – as a 3D vector
• Angular velocity (with respect to the global frame) – as a 3D vector

11

///
/// Structure to communicate a full body state.
///
struct BodyState {

ChVector<> pos; ///< global position
ChQuaternion<> rot; ///< orientation with respect to global frame
ChVector<> lin_vel; ///< linear velocity, expressed in the global frame
ChVector<> ang_vel; ///< angular velocity, expressed in the global frame

};

Data exchange structures

• WheelState structure – encapsulates the full state of a wheel body
• Position, orientation, velocity – same as BodyState
• Additionally contains the wheel angular speed about its rotation axis – as a double scalar

• A wheel state structure is passed to each tire system during the inter-system
communication phase

12

///
/// Structure to communicate a full wheel body state.
/// In addition to the quantities communicated for a generic body, the wheel
/// state also includes the wheel angular speed about its axis of rotation.
///
struct WheelState {

ChVector<> pos; ///< global position
ChQuaternion<> rot; ///< orientation with respect to global frame
ChVector<> lin_vel; ///< linear velocity, expressed in the global frame
ChVector<> ang_vel; ///< angular velocity, expressed in the global frame
double omega; ///< wheel angular speed about its rotation axis

};

Data exchange structures

• TireForce structure – encapsulates the tire forces applied to a wheel body
• Force vector and application point (expressed in the global reference frame)
• Moment vector (expressed in the global reference frame)

• A tire force structure is obtained from each tire system during the inter-system
communication phase

• The tire force and moment are applied to the wheel (spindle) body as external forces

13

///
/// Structure to communicate a set of generalized tire forces.
///
struct TireForce {

ChVector<> force; ///< force vector, expressed in the global frame
ChVector<> point; ///< global location of the force application point
ChVector<> moment; ///< moment vector, expressed in the global frame

};

JSON specification file for a wheeled vehicle (1/3)

14

JSON file with chassis specification
(relative to the root of the data directory)

System type (string)

Template type (string)

{
"Name": "Test vehicle - 3 axles",
"Type": "Vehicle",
"Template": "WheeledVehicle",

"Chassis":
{

"Input File": "generic/chassis/Chassis.json"
},

JSON specification file for a vehicle (2/3)

15

"Axles":
[
{
"Suspension Input File": "hmmwv/suspension/HMMWV_DoubleWishboneFront.json",
"Suspension Location": [1.6914, 0, 0.0264],
"Left Wheel Input File": "hmmwv/wheel/HMMWV_Wheel_FrontLeft.json",
"Right Wheel Input File": "hmmwv/wheel/HMMWV_Wheel_FrontRight.json",
"Left Brake Input File": "hmmwv/brake/HMMWV_BrakeSimple_Front.json",
"Right Brake Input File": "hmmwv/brake/HMMWV_BrakeSimple_Front.json"

},

{
"Suspension Input File": "generic/suspension/SolidAxleRear.json",
"Suspension Location": [-0.5, 0, 0.0264],
"Left Wheel Input File": "hmmwv/wheel/HMMWV_Wheel_RearLeft.json",
"Right Wheel Input File": "hmmwv/wheel/HMMWV_Wheel_RearRight.json",
"Left Brake Input File": "hmmwv/brake/HMMWV_BrakeSimple_Rear.json",
"Right Brake Input File": "hmmwv/brake/HMMWV_BrakeSimple_Rear.json"

},

{
"Suspension Input File": "generic/suspension/SolidAxleRear.json",
"Suspension Location": [-1.8, 0, 0.0264],
"Left Wheel Input File": "hmmwv/wheel/HMMWV_Wheel_RearLeft.json",
"Right Wheel Input File": "hmmwv/wheel/HMMWV_Wheel_RearRight.json",
"Left Brake Input File": "hmmwv/brake/HMMWV_BrakeSimple_Rear.json",
"Right Brake Input File": "hmmwv/brake/HMMWV_BrakeSimple_Rear.json"

}

],

Offset of the suspension reference frame with
respect to the chassis reference frame

JSON specification file for a vehicle (3/3)

16

"Steering":
{
"Input File": "hmmwv/steering/HMMWV_PitmanArm.json",
"Location": [1.24498, 0, 0.109322],
"Orientation": [0.98699637, 0, 0.16074256, 0],
"Suspension Index": 0

},

"Driveline":
{
"Input File": "hmmwv/driveline/HMMWV_Driveline4WD.json",
"Suspension Indexes": [0, 2]

}
}

Position and orientation of the steering
subsystem reference frame with respect to the
chassis reference frame.

Index of the vehicle axle that is connected to the
steering subsystem (here, the first axle in the
list).

Indexes of the vehicle axles that are connected to
the driveline subsystem (here, the first and third
in the list). Must be consistent with the driveline
type.

Tire Models
Rigid Tire
LuGre Tire
Pacejka Tire
ANCF Tire

17

DRIVER POWERTRAIN

Data flow

18

VEHICLE TIRES

TERRAIN

Height
Normal

Forces and moments on wheel bodies

Wheel states

ChTire base class

• Defines the common interface for any tire system
• All classes defining particular tire templates inherit from ChTire

19

///
/// Base class for a tire system.
/// A tire subsystem is a force element. It is passed position and velocity
/// information of the wheel body and it produces ground reaction forces and
/// moments to be applied to the wheel body.
///
class CH_VEHICLE_API ChTire : public ChPart

ChTire base class members

• A ChTire has:

20

VehicleSide m_side; ///< tire mounted on left/right side
std::shared_ptr<ChBody> m_wheel; ///< associated wheel body

ChTire base class virtual methods

• Update the tire at a communication time with data from other systems

• Advance the state of the tire to the next communication point

• Set the (output) torque to be applied to the associated wheel body

21

/// Get the tire force and moment.
/// This represents the output from this tire system that is passed to the
/// vehicle system. Typically, the vehicle subsystem will pass the tire force
/// to the appropriate suspension subsystem which applies it as an external
/// force one the wheel body.
virtual ChTireForce GetTireForce() const = 0;

/// Advance the state of this tire by the specified time step.
virtual void Advance(double step) {}

/// Update the state of this tire system at the current time.
/// The tire system is provided the current state of its associated wheel and
/// a handle to the terrain system.
virtual void Synchronize(double time, ///< [in] current time

const WheelState& wheel_state, ///< [in] current state of associated wheel body
const ChTerrain& terrain ///< [in] reference to the terrain system
) {}

Tire Models
Rigid Tire

22

ChRigidTire and RigidTire

• ChRigidTire is an abstract class (i.e., system template)
• Define basic functions for pure virtual functions (only GetTireForce)
• Define virtual functions that are common for all RigidTire models

• Initialize(ChSharedPtr<ChBody> wheel)
• virtual and pure virtual functions

• RigidTire is a concrete class
• Cylinder collision geometry, constant tire inertia
• Interacts with terrain using rigid body frictional contact
• Implements pure virtual functions in ChRigidTire
• Defines how to read input JSON file

23

class ChRigidTire: public ChTire;

class RigidTire: public ChRigidTire;

JSON specification file for rigid tire

24

{
"Name": "HMMWV Rigid Tire",
"Type": "Tire",
"Template": "RigidTire",

"Radius": 0.4699,
"Width": 0.254,
"Coefficient of Friction": 0.7

}

System type (string)

Template type (string)

Tire Models
LuGre Tire

25

ChLugreTire and LugreTire

• ChLugreTire is an abstract class (i.e., system template)
• virtual functions that are common for all Lugre tire models:

• LugreTire is a concrete class
• Defines how to read tire parameters from input JSON file
• Tangent/Traction forces according to first order ODE
• Documentation – SBEL Tech Report 2014-15 “Lugre Tire Model for HMMWV”, Aki Mikkola
• sbel.wisc.edu/Publications

26

virtual int getNumDiscs() = 0;
virtual double getRadius() = 0;
virtual const double* getDiscLocations() = 0;
virtual double getNormalStiffness() = 0;
virtual double getNormalDamping() = 0;
virtual void SetLugreParams() = 0;

JSON specification file for LuGre tire

27

System type (string)

Template type (string)

{
"Name": "HMMWV Lugre Tire",
"Type": "Tire",
"Template": "LugreTire",

"Radius": 0.4699,

"Disc Locations": [-0.127, 0, 0.127],

"Normal Stiffness": 2e6,
"Normal Damping": 1e3,

"Lugre Parameters" :
{

"sigma0": [181.0, 60.0],
"sigma1": [1.0, 0.2],
"sigma2": [0.02, 0.002],
"Fc": [0.6, 0.6],
"Fs": [1.0, 1.0],
"vs": [3.5, 3.5]

}
}

Transversal locations of the constituent discs,
relative to the tire’s center plane. This particular
tire uses 3 equally spaced discs.

Stiffness and (viscous) damping used in
calculating the normal tire force

LuGre tire parameters. Two values are specified
for each parameter, the first for the longitudinal
direction, the second for the transversal
direction.

Tire Models
Pacejka Tire

28

ChPacejkaTire

• ChPacejkaTire is a concrete class
• Could benefit from the abstract/concrete organization of previous two models
• Allow older Pacejka formulations to be tested
• Pac2002 formulation is ubiquitous in commercial software

• Chrono::Vehicle implementation tested and validated against commercial
solutions

• Documentation: SBEL Tech Reports 2014-14 and 2014-16
• “Validation of a Steady-State Magic Formula Tire in Chrono with a Comercial Software

Implementation”, J. Madsen and A. Dirr.
• “Validation of a Single Contact Point Tire Model Based on the Transient Pacejka Model in the

Open-Source Dynamics Software Chrono”, J. Madsen
• sbel.wisc.edu/Publications

29

Tire Models
Deformable tires
ANCF Tire

30

ChDeformableTire base class

• Base class for tires modeled with finite element meshes
• Derived classes: ChANCFTire, CHFEATire
• Provides support for defining:

• FEA mesh
• Connection to rim body
• Internal pressure load
• Contact geometry (contact surface) and contact material properties

31

ChDeformableTire base class members

32

std::shared_ptr<fea::ChMesh> m_mesh; ///< tire mesh
std::shared_ptr<ChLoadContainer> m_load_container; ///< load container (for pressure load)
std::vector<std::shared_ptr<fea::ChLinkPointFrame>> m_connections; ///< tire-wheel point connections
std::vector<std::shared_ptr<fea::ChLinkDirFrame>> m_connectionsD; ///< tire-wheel direction connections
std::vector<std::shared_ptr<ChLinkMateFix>> m_connectionsF; ///< tire-wheel fix connection (point+rotation)

bool m_connection_enabled; ///< enable tire connections to rim
bool m_pressure_enabled; ///< enable internal tire pressure
bool m_contact_enabled; ///< enable tire-terrain contact

double m_pressure; ///< internal tire pressure

ContactSurfaceType m_contact_type; ///< type of contact surface model (node cloud or mesh)
double m_contact_node_radius; ///< node radius (for node cloud contact surface)
double m_contact_face_thickness; ///< face thickness (for mesh contact surface)

float m_friction; ///< contact coefficient of friction
float m_restitution; ///< contact coefficient of restitution
float m_young_modulus; ///< contact material Young modulus
float m_poisson_ratio; ///< contact material Poisson ratio
float m_kn; ///< normal contact stiffness
float m_gn; ///< normal contact damping
float m_kt; ///< tangential contact stiffness
float m_gt; ///< tangential contact damping

std::shared_ptr<ChMaterialSurfaceDEM> m_contact_mat; ///< tire contact material
std::shared_ptr<fea::ChVisualizationFEAmesh> m_visualization; ///< tire mesh visualization

ChDeformableTire base class virtual methods

33

/// Create the FEA nodes and elements.
/// The wheel rotational axis is assumed to be the Y axis.
virtual void CreateMesh(const ChFrameMoving<>& wheel_frame, ///< [in] frame of associated wheel

VehicleSide side ///< [in] left/right vehicle side
) = 0;

/// Create the ChLoad for applying pressure to the tire.
/// A derived class must create a load and add it to the underlying load container.
virtual void CreatePressureLoad() = 0;

/// Create the contact surface for the tire mesh.
/// A derived class must create a contact surface and add it to the underlying mesh.
virtual void CreateContactSurface() = 0;

/// Create the tire-rim connections.
/// A derived class must create the various constraints between the tire and the
/// provided wheel body and add them to the underlying system.
virtual void CreateRimConnections(std::shared_ptr<ChBody> wheel ///< [in] associated wheel body

) = 0;

ChANCFTire

34

(3) Tread Section

(2) Sidewall
Section

(1) Bead
Section

• ANCF Tire model is connected to a rigid rim body through
displacement and gradient constraints for the nodes at
the outer edges of the bead section of the tire model.

• The internal air pressure is applied through a distributed
load class available in Chrono::FEA.

• Tire shape / size
• Layer properties
• Element mesh resolution

User-specified parameters:

(1) Bead section

(3) Tread section

Carcass

Carcass

Carcass

90α = °

90α = °

90α = °

Cord angle

Carcass 90α = °

Rubber

Rubber

0α = °

0α = °

(2) Sidewall section

Carcass
Belt
Belt

90α = °

20α = °

20α = − °

Rubber 0α = °

Thickness
0.5h mm=

0.5h mm=

0.5h mm=

0.5h mm=

5.0h mm=

0.1h mm=

0.5h mm=

0.3h mm=

1.0h mm=

0.3h mm=

JSON specification file for ANCF tire (1/2)

35

{
"Name": "HMMWV ANCF Tire",
"Type": "Tire",
"Template": "ANCFTire",

"Tire Radius": 0.4673,
"Rim Radius": 0.2683,
"Rim Width": 0.254,

"Contact Material":
{

"Coefficient of Friction": 0.9,
"Coefficient of Restitution": 0.1,

"Properties":
{

"Young Modulus": 2e6,
"Poisson Ratio": 0.3

},

"Coefficients":
{

"Normal Stiffness": 2.0e6,
"Normal Damping": 1.3e1,
"Tangential Stiffness": 1.0e6,
"Tangential Damping": 0

}
},

"Materials":
[

{
"Type": "Orthotropic",
"Density": 0.1000000E+04,
"E": [0.7560000E+10 , 0.4740000E+08 , 0.4740000E+08],
"nu": [0.4500000E+00 , 0.4500000E+00 , 0.4500000E+00],
"G": [0.1634483E+08 , 0.1634483E+08 , 0.1634483E+08]

},

{
"Type": "Orthotropic",
"Density": 0.2639000E+04,
"E": [0.1800000E+12 , 0.4740000E+08 , 0.4740000E+08],
"nu": [0.4500000E+00 , 0.4500000E+00 , 0.4500000E+00],
"G": [0.1634483E+08 , 0.1634483E+08 , 0.1634483E+08]

},

{
"Type": "Orthotropic",
"Density": 0.1100000E+04,
"E": [0.4740000E+08 , 0.4740000E+08 , 0.4740000E+08],
"nu": [0.4500000E+00 , 0.4500000E+00 , 0.4500000E+00],
"G": [0.1634483E+08 , 0.1634483E+08 , 0.1634483E+08]

}
],

“Isotropic” or
“Orthotropic”

JSON specification file for ANCF tire (2/2)

36

"Structural Damping Coefficient": 0.005,

"Default Pressure": 200.0e3,

"Bead Section":
{

"Layer Thickness": [0.5e-03 , 0.5e-02 , 0.5e-03],
"Ply Angle": [90 , 0 , 90],
"Material ID": [0 , 2 , 0],
"Number Elements": 2

},

"Sidewall Section":
{

"Layer Thickness": [0.5e-03 , 0.1e-03 , 0.5e-03],
"Ply Angle": [90 , 0 , 90],
"Material ID": [0 , 2 , 0],
"Number Elements": 4

},

"Tread Section":
{

"Layer Thickness": [0.1e-02 , 0.3e-03 , 0.3e-03 , 0.5e-03],
"Ply Angle": [0 , -20 , 20 , 90],
"Material ID": [2 , 1 , 1 , 0],
"Number Elements": 6

},

"Number Elements Circumference": 90,

"Profile":
[

[0.000000E+00 , 0.000000E+00 , -1.150000E-01],
[1.428571E-02 , 1.166670E-02 , -1.164180E-01],
[2.857143E-02 , 2.333330E-02 , -1.192300E-01],
[4.285714E-02 , 3.500000E-02 , -1.230200E-01],
[5.714286E-02 , 4.666670E-02 , -1.273710E-01],
[7.142857E-02 , 5.833330E-02 , -1.318700E-01],
[8.571429E-02 , 7.000000E-02 , -1.361330E-01],
[1.000000E-01 , 8.166670E-02 , -1.399910E-01],
[1.142857E-01 , 9.333330E-02 , -1.433510E-01],
[1.285714E-01 , 1.050000E-01 , -1.461240E-01],
[1.428571E-01 , 1.166670E-01 , -1.482160E-01],
[1.571429E-01 , 1.283330E-01 , -1.495390E-01],
[1.714286E-01 , 1.400000E-01 , -1.500000E-01],

.

.

.

[9.571429E-01 , 3.500000E-02 , 1.230200E-01],
[9.714286E-01 , 2.333330E-02 , 1.192300E-01],
[9.857143E-01 , 1.166670E-02 , 1.164180E-01],
[1.000000E+00 , 0.000000E+00 , 1.150000E-01]

]
}

α x(α) y(α)

Parameterized
2D curve

Suspension Test Rig

37

Suspension Test Rig

• Purpose:
Analyze combined front
suspension/steering subsystem
behavior without involving complex
full vehicle dynamics.

• Examples:
1. Shock spring prelength/preload
2. Steering wheel input limits

38

Suspension Test Rig Overview

• Similar to a full vehicle system
• Front half, chassis fixed to ground
• Shaker posts added to the system

• Left=Green, Right=Red

• Constrained to move only vertically (global)
• Linear Actuator specifies post displacement
• Wheel spindle body CM point constrained in

plane
• Plane vertically offset from shaker post surface

• Logs important measurements to console or
file

39

JSON specification file for SuspensionTestRig

40

Subsystem type (string)

Template type (string)

{
"Name": "HMMWV Front Suspension Test",
"Type": "SuspensionTest",
"Template": "SuspensionTest",

"Suspension":
{
"Input File": "hmmwv/suspension/HMMWV_DoubleWishboneFront.json",
"Location": [1.688965, 0, 0],
"Left Wheel Input File": "hmmwv/wheel/HMMWV_Wheel_FrontLeft.json",
"Right Wheel Input File": "hmmwv/wheel/HMMWV_Wheel_FrontRight.json"

},

"Steering":
{
"Input File": "hmmwv/steering/HMMWV_PitmanArm.json",
"Location": [1.24498, 0, 0.101322],
"Orientation": [0.98699637, 0, 0.16074256, 0],
"Suspension Index": 0

}
}

Subsystems (suspension and steering) specified
as in a wheeled vehicle JSON specification file.
The block specifying the steering subsystem is
optional.

Suspension Subsystem

41

ChSuspension base class

• Defines the common interface for any suspension subsystem
• All classes defining particular suspension templates inherit from ChSuspension

42

///
/// Base class for a suspension subsystem.
///
class CH_VEHICLE_API ChSuspension : public ChPart

ChSuspension base class members

• A ChSuspension has:

43

std::shared_ptr<ChBody> m_spindle[2]; ///< handles to spindle bodies
std::shared_ptr<ChShaft> m_axle[2]; ///< handles to axle shafts
std::shared_ptr<ChShaftsBody> m_axle_to_spindle[2]; ///< handles to spindle-shaft connectors
std::shared_ptr<ChLinkLockRevolute> m_revolute[2]; ///< handles to spindle revolute joints

ChSuspension base class accessors

• A ChSuspension provides access to:
• Its constituent parts (spindle body, axle shaft, etc.)
• States of the wheel (spindle) bodies
• Angular speed of the axle shafts

44

ChSuspension base class methods

• A ChSuspension provides methods to:

45

/// Apply the provided tire forces.
/// The given tire force and moment is applied to the specified (left or
/// right) spindle body. This function provides the interface to the tire
/// system (intermediated by the vehicle system).
void ApplyTireForce(

ChVehicleSide side, ///< spindle body (left or right) where forces should be applied
const ChTireForce& tire_force ///< generalized tire forces
);

/// Apply the provided motor torque.
/// The given torque is applied to the specified (left or right) axle. This
/// function provides the interface to the drivetrain subsystem (intermediated
/// by the vehicle system).
void ApplyAxleTorque(

ChVehicleSide side, ///< indicates the axle (left or right) where the torque should be applied
double torque ///< value of applied torque
);

ChSuspension base class virtual methods

• A concrete class must implement

46

/// Initialize this suspension subsystem.
/// The suspension subsystem is initialized by attaching it to the specified
/// chassis body at the specified location (with respect to and expressed in
/// the reference frame of the chassis). It is assumed that the suspension
/// reference frame is always aligned with the chassis reference frame.
/// Finally, tierod_body is a handle to the body to which the suspension
/// tierods are to be attached. For a steerable suspension, this will be the
/// steering link of a suspension subsystem. Otherwise, this is the chassis.
virtual void Initialize(std::shared_ptr<ChBodyAuxRef> chassis, ///< [in] handle to the chassis body

const ChVector<>& location, ///< [in] location relative to the chassis frame
std::shared_ptr<ChBody> tierod_body, ///< [in] body to which tierods are connected
double left_ang_vel = 0, ///< [in] initial angular velocity of left wheel
double right_ang_vel = 0 ///< [in] initial angular velocity of right wheel
) = 0;

Suspension Templates
Double Wishbone (full and reduced)

47

Upper control arm

Lower control arm

LCA balljoint

Tierod

Upright

Spindle

UCA balljoint

Shock

LCA revolute

UCA revolute

Spindle revolute

48

DOUBLE A-ARM SUSPENSION
TEMPLATE

1D shaft element

3D rigid body

shaft – body connector

joint
Upper control arm

Lower control arm

Chassis Upright Spindle Axle

Tire forcesWheel state

Angular velocity

Motor torque

Revolute
joint

Revolute
joint

Revolute
joint

Spherical
joint

Spherical
joint

Distance constraint

Shock

49

DOUBLE A-ARM SUSPENSION
TEMPLATE PARAMETERS

rotational inertia

mass and inertia tensor

spring coef., damping, free length

point location
Upper control arm

Lower control arm

Chassis Upright Spindle Axle

Revolute
joint

Revolute
joint

Revolute
joint

Spherical
joint

Spherical
joint

Distance constraint

Shock

50

(R) DOUBLE A-ARM SUSPENSION
TEMPLATE

1D shaft element

3D rigid body

shaft – body connector

joint

Chassis Upright Spindle Axle

Tire forcesWheel state

Angular velocity

Motor torque

Revolute
joint

Distance constraint

Shock

Distance constraint

Distance constraint

Distance constraint

Distance constraint

51

Chassis Upright Spindle Axle

Revolute
joint

Distance constraint

Shock

Distance constraint

Distance constraint

Distance constraint

Distance constraint
rotational inertia

mass and inertia tensor

spring coef., damping, free length

point location

(R) DOUBLE A-ARM SUSPENSION
TEMPLATE PARAMETERS

52

53

Y

XZ

UPRIGHT
SPINDLE

TIEROD_U

TIEROD_C

LCA_B

LCA_F

LCA_U

UCA_U

UCA_F

UCA_B

UCA_CM

LCA_CM

SHOCK_C

SHOCK_U

SUSPENSION SUBSYSTEM
REFERENCE FRAME

CONTROL ARM
CENTROIDAL FRAME

Z X

Y

ChDoubleWishbone base class

54

///
/// Base class for a double-A arm suspension modeled with bodies and constraints.
/// Derived from ChSuspension, but still an abstract base class.
///
/// The suspension subsystem is modeled with respect to a right-handed frame,
/// with X pointing towards the front, Y to the left, and Z up (ISO standard).
/// The suspension reference frame is assumed to be always aligned with that of
/// the vehicle. When attached to a chassis, only an offset is provided.
///
/// All point locations are assumed to be given for the left half of the
/// suspension and will be mirrored (reflecting the y coordinates) to construct
/// the right side.
///
class CH_VEHICLE_API ChDoubleWishbone : public ChSuspension

ChDoubleWishbone (pure) virtual functions

55

/// Identifiers for the various hardpoints.
enum PointId {

SPINDLE, ///< spindle location
UPRIGHT, ///< upright location
UCA_F, ///< upper control arm, chassis front
UCA_B, ///< upper control arm, chassis back
UCA_U, ///< upper control arm, upright
UCA_CM, ///< upper control arm, center of mass
LCA_F, ///< lower control arm, chassis front
LCA_B, ///< lower control arm, chassis back
LCA_U, ///< lower control arm, upright
LCA_CM, ///< lower control arm, center of mass
SHOCK_C, ///< shock, chassis
SHOCK_A, ///< shock, lower control arm
SPRING_C, ///< spring, chassis
SPRING_A, ///< spring, lower control arm
TIEROD_C, ///< tierod, chassis
TIEROD_U, ///< tierod, upright
NUM_POINTS

};

/// Return the location of the specified hardpoint.
/// The returned location must be expressed in the suspension reference frame.
virtual const ChVector<> getLocation(PointId which) = 0;

ChDoubleWishbone (pure) virtual functions

56

/// Return the mass of the spindle body.
virtual double getSpindleMass() const = 0;
/// Return the mass of the upper control arm body.
virtual double getUCAMass() const = 0;
/// Return the mass of the lower control body.
virtual double getLCAMass() const = 0;
/// Return the mass of the upright body.
virtual double getUprightMass() const = 0;

/// Return the moments of inertia of the spindle body.
virtual const ChVector<>& getSpindleInertia() const = 0;
/// Return the moments of inertia of the upper control arm body.
virtual const ChVector<>& getUCAInertia() const = 0;
/// Return the moments of inertia of the lower control arm body.
virtual const ChVector<>& getLCAInertia() const = 0;
/// Return the moments of inertia of the upright body.
virtual const ChVector<>& getUprightInertia() const = 0;

/// Return the inertia of the axle shaft.
virtual double getAxleInertia() const = 0;

ChDoubleWishbone (pure) virtual functions

57

/// Indicate whether the spring is modeled as a nonlinear element.
/// If true, the concrete class must provide a callback function to calculate
/// the force in the spring element (see getSpringForceCallback).
virtual bool useNonlinearSpring() const { return false; }
/// Indicate whether the shock is modeled as a nonlinear element.
/// If true, the concrete class must provide a callback function to calculate
/// the force in the shock element (see getShockForceCallback).
virtual bool useNonlinearShock() const { return false; }

/// Return the spring coefficient (for linear spring elements).
virtual double getSpringCoefficient() const { return 1.0; }
/// Return the damping coefficient (for linear shock elements).
virtual double getDampingCoefficient() const { return 1.0; }

/// Return the free (rest) length of the spring element.
virtual double getSpringRestLength() const = 0;

/// Return the callback function for spring force (for nonlinear spring).
virtual ChSpringForceCallback* getSpringForceCallback() const { return NULL; }
/// Return the callback function for shock force (for nonlinear shock).
virtual ChSpringForceCallback* getShockForceCallback() const { return NULL; }

ChDoubleWishbone (pure) virtual functions

58

/// Return the radius of the spindle body (visualization only).
virtual double getSpindleRadius() const = 0;
/// Return the width of the spindle body (visualization only).
virtual double getSpindleWidth() const = 0;
/// Return the radius of the upper control arm body (visualization only).
virtual double getUCARadius() const = 0;
/// Return the radius of the lower control arm body (visualization only).
virtual double getLCARadius() const = 0;
/// Return the radius of the upright body (visualization only).
virtual double getUprightRadius() const = 0;

JSON specification for double wishbone

59

{
"Name": "Generic DoubleWishbone Front",
"Type": "Suspension",
"Template": "DoubleWishbone",

"Spindle" :
{

"Mass": 1.103,
"COM": [-0.040, 0.910, -0.026],
"Inertia": [0.000478, 0.000496, 0.000478],
"Radius": 0.15,
"Width": 0.06

},

"Upright":
{

"Mass": 1.397,
"COM": [-0.040, 0.910, -0.026],
"Inertia": [0.0138, 0.0146, 0.00283],
"Radius": 0.025

},

Subsystem type (string)

Template type (string)

Mass in kg (float)

Location of the center of mass in m (float) with
respect to the suspension reference frame

Moments of inertia in kg m2 (float)

Visualization dimensions in m (float)

Identifier name (string)

JSON specification for double wishbone

60

"Upper Control Arm":
{
"Mass": 1.032,
"COM": [-0.196, 0.645, 0.245],
"Inertia": [0.00591, 0.00190, 0.00769],
"Radius": 0.02,
"Location Chassis Front": [-0.160, 0.539, 0.243],
"Location Chassis Back": [-0.339, 0.587, 0.249],
"Location Upright": [-0.088, 0.808, 0.243]

},

"Lower Control Arm":
{
"Mass": 1.611,
"COM": [-0.040, 0.639, -0.224],
"Inertia": [0.0151, 0.0207, 0.0355],
"Radius": 0.03,
"Location Chassis Front": [0.199, 0.479, -0.206],
"Location Chassis Back": [-0.279, 0.539, -0.200],
"Location Upright": [-0.040, 0.898, -0.265]

},

Locations of the front and back attachment points between the
control arm and the chassis in m (float) with respect to the

suspension reference frame. These points form the axis of rotation
for the revolute joint between the chassis and the control arm

Location of the spherical joint between the control arm and the
upright in m (float) with respect to the suspension reference

frame

JSON specification for double wishbone

61

"Tierod":
{
"Location Chassis": [-0.279, 0.479, -0.026],
"Location Upright": [-0.220, 0.898, -0.026]

},

"Spring":
{
"Location Chassis": [-0.064, 0.659, 0.094],
"Location Arm": [-0.040, 0.718, -0.206],
"Spring Coefficient": 369149.000,
"Free Length" : 0.356

},

"Shock":
{
"Location Chassis": [-0.088, 0.599, 0.393],
"Location Arm": [-0.040, 0.718, -0.206],
"Damping Coefficient": 22459.000

},

"Axle":
{
"Inertia": 0.4

}
}

Locations of the upper and lower attachment points
between the control arm and the chassis in m (float) with

respect to the suspension reference frame

Rotational moment of inertia in kg m2 (float)

Suspension Templates
Solid Axle

62

SOLID ARM SUSPENSION
TEMPLATE

1D shaft element

3D rigid body

shaft – body connector

joint

Spindle Axle

Tire forcesWheel state

Angular velocity

Motor torque

Revolute
joint

Universal
joint

Universal
joint

Spherical
joint

Spherical
joint

Distance
constraint

Shock

63

Knuckle

Revolute
joint

Chassis

Axle tube

Upper
link

Lower
link

64

Y

X
Z

SPINDLE

TIEROD_U TIEROD_C

SHOCK_C

SHOCK_U

SUSPENSION SUBSYSTEM
HARDPOINTS

SUSPENSION SUBSYSTEM
PARTS

Spindle

JSON specification file for solid axle

65

{
"Name": "Generic Solid Axle Front",
"Type": "Suspension",
"Template": "SolidAxle",

"Spindle" :
{
"Mass": 0.248,
"COM": [0, 0.910, 0],
"Inertia": [0.0000558, 0.0000279, 0.0000558],
"Radius": 0.06,
"Width": 0.04

},

"Knuckle":
{
"Mass": 1.356,
"COM": [-0.006, 0.834, 0.015],
"Inertia": [0.00255, 0.00134, 0.00196],
"Radius": 0.01,
"Location Lower": [0.006, 0.849, -0.061],
"Location Upper": [-0.018, 0.819, 0.091]

},

Subsystem type (string)

Template type (string)

Mass in kg (float)

Location of the center of mass in m (float) with respect to
the suspension reference frame

Moments of inertia in kg m2 (float)

Visualization dimensions in m (float)

Identifier name (string)

Locations of the upper and lower attachment points
between the knuckle and axle tube in m (float) with respect
to the suspension reference frame. These points form the
axis of rotation for the revolute joint between the knuckle

and the axle tube

JSON specification file for solid axle

66

"Upper Link":
{
"Mass": 1.446,
"COM": [0.182, 0.591, 0.182],
"Inertia": [0.011, 0.011, 0.000142],
"Radius": 0.02,
"Location Axle": [-0.067, 0.576, 0.182],
"Location Chassis": [0.431, 0.606, 0.182],
"Universal Joint Axis Link": [0, -1, 0],
"Universal Joint Axis Chassis": [0, 0, 1]

},
"Lower Link":
{
"Mass": 2.892,
"COM": [0.279, 0.577, -0.073],
"Inertia": [0.0514, 0.0514, 0.00037],
"Radius": 0.02,
"Location Axle": [0.012, 0.728, -0.091],
"Location Chassis": [0.546, 0.425, -0.055],
"Universal Joint Axis Link": [0, 1, 0],
"Universal Joint Axis Chassis": [0, 0, 1]

},
"Axle Tube" :
{
"Mass": 44.958,
"COM": [0, 0, 0],
"Inertia": [7.744, 0.045, 7.744],
"Radius": 0.03

},

Location of the spherical joint that attaches the link to the
axle tube with respect to the suspension reference frame in

m (float)

Location of the universal joint that attaches the link to the
axle tube with respect to the suspension reference frame in

m (float)

Directions of the universal joint that attaches the link to the
axle tube

JSON specification file for solid axle

67

"Tierod":
{
"Location Chassis": [-0.091, 0.400, -0.079],
"Location Knuckle": [-0.091, 0.825, -0.079]

},

"Spring":
{
"Location Chassis": [-0.097, 0.679, 0.364],
"Location Axle": [-0.079, 0.697, -0.030],
"Spring Coefficient": 267062.000,
"Free Length": 0.3948

},

"Shock":
{
"Location Chassis": [-0.097, 0.679, 0.364],
"Location Axle": [-0.079, 0.697, -0.030],
"Damping Coefficient": 22459.000

},

"Axle":
{
"Inertia": 0.4

}
}

Locations of the upper and lower attachment points between
the control arm and the chassis in m (float) with respect to the

suspension reference frame

Rotational moment of inertia in kg m2 (float)

Suspension Templates
Multi-link

68

69

Lateral

Trailing link

Chassis Upright Spindle Axle

Tire forcesWheel state

Angular velocity

Motor torque

Universal
joint

Revolute
joint

Universal
joint

Spherical
joint

Spherical
joint

Distance constraint

Shock

Upper arm

Revolute
joint

Spherical
joint MULTI-LINK SUSPENSION

TEMPLATE

1D shaft element

3D rigid body

shaft – body connector

joint

70

Y

X
ZSPINDLE

TIEROD_U

TIEROD_C

SHOCK_C

SHOCK_U

SUSPENSION SUBSYSTEM
HARDPOINTS

SUSPENSION SUBSYSTEM
PARTS

Spindle

JSON specification file for multi-link

71

{
"Name": "Generic Multi-Link Front",
"Type": "Suspension",
"Template": "MultiLink",

"Spindle" :
{
"Mass": 1.103,
"COM": [0.000, 0.950, 0.000],
"Inertia": [0.000478, 0.000478, 0.000496],
"Radius": 0.15,
"Width": 0.03

},

"Upright":
{
"Mass": 3.201,
"COM": [0.000, 0.910, 0.000],
"Inertia": [0.0250, 0.00653, 0.0284],
"Radius": 0.02

},

Subsystem type (string)

Template type (string)

Mass in kg (float)

Location of the center of mass in m (float) with
respect to the suspension reference frame

Moments of inertia in kg m2 (float)

Visualization dimensions in m (float)

Identifier name (string)

JSON specification file for multi-link

72

"Upper Arm":
{

"Mass": 4.744,
"COM": [-0.014, 0.640, 0.098],
"Inertia": [0.0237, 0.0294, 0.00612],
"Radius": 0.02,
"Location Chassis Front": [0.060, 0.547, 0.082],
"Location Chassis Back": [-0.157, 0.508, 0.062],
"Location Upright": [0.056, 0.864, 0.151]

},

"Lateral":
{

"Mass": 1.910,
"COM": [0.033, 0.590, -0.113],
"Inertia": [0.0543, 0.0541, 0.000279],
"Radius": 0.02,
"Location Chassis": [0.036, 0.338, -0.133],
"Location Upright": [0.029, 0.842, -0.093],
"Universal Joint Axis Link": [-0.978950, 0.204099, 0.0],
"Universal Joint Axis Chassis": [-0.021990, -0.105472, 0.994179]

},

"Trailing Link":
{

"Mass": 15.204,
"COM": [0.279, 0.693, -0.132],
"Inertia": [0.0762, 0.527, 0.567],
"Radius": 0.03,
"Location Chassis": [0.723, 0.599, -0.072],
"Location Upright": [-0.000, 0.864, -0.156],
"Universal Joint Axis Link": [0.0, 0.0, 1.0],
"Universal Joint Axis Chassis": [-0.272, 0.962, 0.0]

},

JSON specification file for multi-link

73

"Tierod":
{
"Location Chassis": [-0.257, 0.320, -0.116],
"Location Upright": [-0.144, 0.862, -0.056]

},

"Spring":
{
"Location Chassis": [0.181, 0.641, 0.110],
"Location Link": [0.181, 0.669, -0.164],
"Spring Coefficient": 167062.000,
"Free Length" : 0.339

},

"Shock":
{
"Location Chassis": [0.171, 0.628, 0.315],
"Location Link": [0.181, 0.669, -0.162],
"Damping Coefficient": 60068.000

},

"Axle":
{
"Inertia": 0.166

}
}

Support for non-linear spring-damper

• Currently supported by the ChDoubleWishbone and ChMultiLink suspension templates
• Implemented using the Chrono ChLinkSpringCB element which accepts a user-defined functor class

• Default implementation is linear spring-damper
• A concrete, derived class can override the functor class to implement an arbitrary non-linear spring

and/or damper
• Example: HMMWV_DoubleWishboneFront & HMMWV_DoubleWishboneRear

74

class ChSpringForceCallback {
public:

virtual double operator()(
double time, ///< current time
double rest_length, ///< undeformed length
double length, ///< current length
double vel ///< current velocity (positive when extending)
) = 0;

};

Wheel Subsystem

75

Wheel subsystem

• A wheel subsystem does not own a body.
• It is just a container for mass properties and geometric information
• When attached to a suspension subsystem, the wheel's mass properties are used to

update those of the spindle body owned by the suspension.
• A concrete wheel subsystem can optionally carry its own visualization assets (which are

associated with the suspension's spindle body).

76

ChWheel base class

• Defines the common interface for a wheel subsystem

77

///
/// Base class for a vehicle wheel subsystem.
/// A wheel subsystem does not own a body. Instead, when attached to a suspension
/// subsystem, the wheel's mass properties are used to update those of the
/// spindle body owned by the suspension.
/// A concrete wheel subsystem can optionally carry its own visualization assets
/// (which are associated with the suspension's spindle body).
///
class CH_VEHICLE_API ChWheel : public ChPart

JSON specification file for wheel

78

{
"Name": "HMMWV Wheel Front-Left",
"Type": "Wheel",
"Template": "Wheel",

"Mass": 88.39,
"Inertia": [0.113, 0.113, 0.113],

"Visualization":
{
"Mesh Filename": "hmmwv/wheel_L.obj",
"Mesh Name": "wheel_L_POV_geom",
"Radius": 0.41,
"Width": 0.254

}
}

Subsystem type (string)

Template type (string)

Brake Subsystem

79

ChBrake base class

• Defines the common interface for any brake subsystem
• All classes defining particular brake templates inherit from ChBrake

80

///
/// Base class for a brake subsystem
///
class CH_VEHICLE_API ChBrake : public ChPart

Brake Templates
Simple brake

81

ChSimpleBrake

• Simple brake model using a constant torque opposing wheel rotation.
• Uses a speed-dependent torque
• It cannot simulate sticking
• On initialization, it is associated with a revolute joint connecting the spindle body
• Has a single parameter, the maximum braking torque

82

JSON specification file for SimpleBrake

83

{
"Name": "HMMWV Brake Front",
"Type": "Brake",
"Template": "BrakeSimple",

"Maximum Torque": 4000
}

Subsystem type (string)

Template type (string)

Maximum braking torque in Nm (double)

Steering Subsystem

84

ChSteering base class

• Defines the common interface for any steering subsystem
• All classes defining particular steering templates inherit from ChSteering

85

///
/// Base class for a steering subsystem.
///
class CH_VEHICLE_API ChSteering : public ChPart

ChSteering base class members

• A ChSteering has:

86

std::shared_ptr<ChBody> m_link; ///< handle to the main steering link

ChSteering base class accessors
• A ChSteering provides access to:

• Its constituent parts (the steering link body)

87

ChSteering base class virtual methods

• Initialize the steering subsystem relative to the chassis body

• Update the steering subsystem with data from the driver system

88

/// Initialize this steering subsystem.
/// The steering subsystem is initialized by attaching it to the specified
/// chassis body at the specified location (with respect to and expressed in
/// the reference frame of the chassis) and with specified orientation (with
/// respect to the chassis reference frame).
virtual void Initialize(std::shared_ptr<ChBodyAuxRef> chassis, ///< [in] handle to the chassis body

const ChVector<>& location, ///< [in] location relative to the chassis frame
const ChQuaternion<>& rotation ///< [in] orientation relative to the chassis frame
) = 0;

/// Update the state of this steering subsystem at the current time.
/// The steering subsystem is provided the current steering driver input (a
/// value between -1 and +1). Positive steering input indicates steering
/// to the left. This function is called during the vehicle update.
virtual void Synchronize(double time, ///< [in] current time

double steering ///< [in] current steering input [-1,+1]
) = 0;

Steering Templates
Pitman Arm

89

PITMAN ARM STEERING
TEMPLATE

3D rigid body

joint

Chassis

Pi
tm

an
 A

rm

Steering Link

Steering input
Revolute joint

Revolute-spherical
joint

Distance constraint Distance constraint

90

Universal
joint

91

STEERING SUBSYSTEM
HARDPOINTS

STEERING SUBSYSTEM
PARTS

Pitman
arm

Steering
link

Idler arm

Revolut
e joint

Universal
joint

Y X

Z

REVSPH_S

REV
UNIV

PITMANARM
STEERINGLINK

REVSPH_R

TIEROD_IA

TIEROD_PA

JSON specification for Pitman arm

92

{
"Name": "HMMWV Pitman Arm Steering",
"Type": "Steering",
"Template": "PitmanArm",

"Steering Link":
{

"Mass": 9.072,
"COM": [0.129, 0, 0],
"Inertia": [1, 1, 1],
"Radius": 0.03

},

"Pitman Arm":
{

"Mass": 2.259,
"COM": [0.064, 0.249, 0],
"Inertia": [1, 1, 1],
"Radius": 0.02

},

Subsystem type (string)

Template type (string)

Identifier name (string)

JSON specification for Pitman arm

93

"Revolute Joint":
{
"Location": [0, 0.249, 0],
"Direction": [0, 0, 1],
"Maximum Angle": 50

},

"Universal Joint":
{
"Location": [0.129, 0.249, 0],
"Direction Arm": [0, 0, 1],
"Direction Link": [1, 0, 0]

},

"Revolute-Spherical Joint":
{
"Location Chassis": [0, -0.325, 0],
"Location Link": [0.129, -0.325, 0],
"Direction": [0, 0, 1]

},

"Tierod Locations":
{
"Pitman Side": [0.195, 0.448, 0.035],
"Idler Side": [0.195, -0.448, 0.035]

}
}

Maximum steering angle in degrees (float)

Direction of the axis of rotation

Steering Templates
Rack Pinion

94

RACK-PINION STEERING
TEMPLATE

3D rigid body

joint

Chassis

Steering Link

Steering input

Distance constraint Distance constraint

95

Prismatic joint

96

Y X

Z

Rack COM

STEERING SUBSYSTEM
HARDPOINTS

STEERING SUBSYSTEM
PARTS

Rack

JSON specification file for rack-pinion

97

{
"Name": “Name of this subsystem",
"Type": "Steering",
"Template": "RackPinion",

"Steering Link":
{

"Mass": 1.0,
"COM": 1.0,
"Inertia": [1.0, 1.0, 1.0],
"Radius": 1.0,
"Length": 1.0

},

"Pinion":
{

"Radius": 1.0,
"Maximum Angle": 1.0

}
}

Identifier name (string)

Subsystem type (string)

Template type (string)

Mass in kg (float)

Lateral offset in m (float)

Moments of inertia in kg m2 (float)

Visualization radius in m (float)

Visualization length in m (float)

Pinion radius in m (float)

Maximum rotation angle in rad (float)

JSON specification file for rack-pinion

• User specifies all values, except those in red
• The reference frame for a rack-pinion steering subsystem is assumed to be aligned with

the chassis reference frame and centered at the middle of the steering link
• The rack displacement is obtained as

𝑖𝑖 = 𝑟𝑟 � 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑠𝑠
where 𝑟𝑟 is the pinion radius, 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum pinion angle, and 𝑠𝑠 is the steering
input (𝑠𝑠 ∈ −1,1)

98

Antiroll-bar Subsystem

99

ChAntirollBar base class

• Defines the common interface for any antiroll-bar subsystem
• All classes defining particular steering templates inherit from ChAntirollBar

100

///
/// Base class for an antiroll-bar subsystem.
///
class CH_VEHICLE_API ChAntirollBar : public ChPart

ChAntirollBar base class virtual methods

• Initialize the subsystem relative to the chassis body

101

/// Initialize this anti-roll bar subsystem.
/// The anti-roll bar subsystem is initialized by attaching it to the specified
/// chassis body at the specified location (with respect to and expressed in
/// the reference frame of the chassis). It is assumed that the suspension
/// reference frame is always aligned with the chassis reference frame.
/// Finally, susp_body_left and susp_body_right are handles to the suspension
/// bodies to which the anti-roll bar's droplinks are to be attached.
virtual void Initialize(

std::shared_ptr<ChBodyAuxRef> chassis, ///< [in] handle to the chassis body
const ChVector<>& location, ///< [in] location relative to the chassis frame
std::shared_ptr<ChBody> susp_body_left, ///< [in] susp body to which left droplink is connected
std::shared_ptr<ChBody> susp_body_right ///< [in] susp body to which right droplink is connected
) = 0;

Antiroll-bar Templates
Antiroll-bar RSD

102

Simple anti-roll bar (model)

103

LCA right

LCA left

Left Arm

Right Arm

Distance constraint
(droplink)

Distance constraint
(droplink)

Revolute (left arm – right arm)
with rotational stiffness

Revolute (left arm - chassis)

Simple anti-roll bar (template parameters)

104

H

WL / 2
L / 2

XY

ZXY

Z

Z

X

Y

k

Simple anti-roll bar (template parameters)

• Geometric
• Arm length (L)
• Arm width (W)
• Arm radius (r) – visualization only
• Droplink height (H)

• Mass properties
• Arm mass (m)
• Arm moments of inertia (Ixx)

• Stiffness
• Spring coefficient (k)

• Subsystem reference frame (XYZ)
• Assumed parallel to the chassis reference

frame

• Left arm centroidal frame (XYZ) at
0, ⁄𝐿𝐿 2 , 0

• Right arm centroidal frame (XYZ) at
0, ⁄−𝐿𝐿 2 , 0

105

JSON specification file for RSD antiroll-bar

106

Subsystem type (string)

Template type (string)

Spring and damper coefficients

{
"Name": "Generic RSD Antirollbar",
"Type": "Antirollbar",
"Template": "AntirollBarRSD",

"Arm":
{
"Mass": 1.0,
"Inertia": [1, 1, 1],
"Length": 0.70,
"Width": 0.4,
"Radius": 0.02

},

"Droplink":
{
"Height": -0.04

},

"RSD":
{
"Spring Coefficient": 1000000,
"Damping Coefficient": 2000

}
}

Driveline Subsystem

107

ChDriveline base class

• Defines the common interface for any driveline subsystem
• All classes defining particular driveline templates inherit from ChDriveline

108

///
/// Base class for a driveline subsystem.
///
class CH_VEHICLE_API ChDriveline : public ChPart

ChDriveline base class members

• A ChDriveline has:

109

std::shared_ptr<ChShaft> m_driveshaft; ///< handle to the shaft connection to the powertrain

std::vector<int> m_driven_axles; ///< indexes of the driven vehicle axles

ChDriveline base class accessors and methods

• A ChDriveline provides access to:
• Its constituent parts (driveshaft)
• Angular speed of the driveshaft
• Motor torque to be applied to a given vehicle wheel

• A ChDriveline provides a method to set the (input) torque from the powertrain system
(typically invoked by the owning vehicle system)

110

/// Apply the specified motor torque.
/// This represents the input to the driveline subsystem from the powertrain
/// system.
void ApplyDriveshaftTorque(double torque) { m_driveshaft->SetAppliedTorque(torque); }

ChDriveline base class virtual methods

• Initialize the driveline and connect it to the specified vehicle axles

• Specify number of driven axles

• Set the (output) torque to be applied to the specified wheel

111

/// Initialize the driveline subsystem.
/// This function connects this driveline subsystem to the axles of the
/// specified suspension subsystems.
virtual void Initialize(std::shared_ptr<ChBody> chassis, ///< handle to the chassis body

const ChSuspensionList& suspensions, ///< list of all vehicle suspension subsystems
const std::vector<int>& driven_axles ///< indexes of the driven vehicle axles
) = 0;

/// Return the number of driven axles.
virtual int GetNumDrivenAxles() const = 0;

/// Get the motor torque to be applied to the specified wheel.
virtual double GetWheelTorque(const ChWheelID& wheel_id) const = 0;

Driveline Templates
ShaftsDriveline4WD

112

rotational inertia

template parameters

4WD DRIVELINE
TEMPLATE PARAMETERS

113

Front shaft
2

Front shaft
1

Front
diff.

Rear shaft
1

Rear shaft
2

Central
diff.

Rear
diff.

Out shaftFront-right
axle

Front-left
axle

Rear-left
axle

Rear-right
axle

Conical gearConical gear

Front-right
spindle

Front-left
spindle

Rear-right
spindle

Rear-left
spindle

Gear ratio Gear ratio

Transmission ratioTransmission ratio

Transmission ratio

TC

Transmission
(Gear box)

Crank shaftEngineMotor
blockChassis

In shaft

JSON specification file for ShaftsDriveline4WD

114

{
"Name": "HMMWV AWD Driveline",
"Type": "Driveline",
"Template": "ShaftsDriveline4WD",

"Shaft Direction":
{
"Motor Block": [1, 0, 0],
"Axle": [0, 1, 0]

},

"Shaft Inertia":
{
"Driveshaft": 0.5,
"Front Driveshaft": 0.5,
"Rear Driveshaft": 0.5,
"Central Differential Box": 0.6,
"Front Differential Box": 0.6,
"Rear Differential Box": 0.6

},

"Gear Ratio":
{
"Front Conical Gear": -0.2,
"Rear Conical Gear": -0.2,
"Central Differential": -1.0,
"Front Differential": -1.0,
"Rear Differential": -1.0

}
}

Subsystem type (string)

Template type (string)

Driveline Templates
ShaftsDriveline2WD

115

rotational inertia

template parameters

2WD DRIVELINE
TEMPLATE PARAMETERS

Rear
diff.

Left axle

Right axle

Right spindle

Left spindle

Transmission ratio

TC

Transmission
(Gear box)

Crank shaftEngineMotor
blockChassis

In shaft

Conical gearOut shaft

Gear ratio

JSON specification file for ShaftsDriveline2WD

117

Subsystem type (string)

Template type (string)

{
"Name": "HMMWV RWD Driveline",
"Type": "Driveline",
"Template": "ShaftsDriveline2WD",

"Shaft Direction":
{

"Motor Block": [1, 0, 0],
"Axle": [0, 1, 0]

},

"Shaft Inertia":
{

"Driveshaft": 0.5,
"Differential Box": 0.6

},

"Gear Ratio":
{

"Conical Gear": -0.2,
"Differential": -1.0

}
}

Sample simulations

118

ISO double lane change

119

Acceleration/braking test (Fiala tires)

120

Rigid mesh terrain

121

	Chrono::Vehicle Tutorial
	Data flow
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Vehicle ISO reference frames
	ChWheeledVehicle base class
	ChWheeledVehicle base class accessors
	ChWheeledVehicle base class virtual functions
	Data exchange structures
	Data exchange structures
	Data exchange structures
	Data exchange structures
	JSON specification file for a wheeled vehicle (1/3)
	JSON specification file for a vehicle (2/3)
	JSON specification file for a vehicle (3/3)
	Tire Models
	Data flow
	ChTire base class
	ChTire base class members
	ChTire base class virtual methods
	Tire Models
	ChRigidTire and RigidTire
	JSON specification file for rigid tire
	Tire Models
	ChLugreTire and LugreTire
	JSON specification file for LuGre tire
	Tire Models
	ChPacejkaTire
	Tire Models
	ChDeformableTire base class
	ChDeformableTire base class members
	ChDeformableTire base class virtual methods
	ChANCFTire
	JSON specification file for ANCF tire (1/2)
	JSON specification file for ANCF tire (2/2)
	Suspension Test Rig
	Suspension Test Rig
	Suspension Test Rig Overview
	JSON specification file for SuspensionTestRig
	Suspension Subsystem
	ChSuspension base class
	ChSuspension base class members
	ChSuspension base class accessors
	ChSuspension base class methods
	ChSuspension base class virtual methods
	Suspension Templates
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	ChDoubleWishbone base class
	ChDoubleWishbone (pure) virtual functions
	ChDoubleWishbone (pure) virtual functions
	ChDoubleWishbone (pure) virtual functions
	ChDoubleWishbone (pure) virtual functions
	JSON specification for double wishbone
	JSON specification for double wishbone
	JSON specification for double wishbone
	Suspension Templates
	Slide Number 63
	Slide Number 64
	JSON specification file for solid axle
	JSON specification file for solid axle
	JSON specification file for solid axle
	Suspension Templates
	Slide Number 69
	Slide Number 70
	JSON specification file for multi-link
	JSON specification file for multi-link
	JSON specification file for multi-link
	Support for non-linear spring-damper
	Wheel Subsystem
	Wheel subsystem
	ChWheel base class
	JSON specification file for wheel
	Brake Subsystem
	ChBrake base class
	Brake Templates
	ChSimpleBrake
	JSON specification file for SimpleBrake
	Steering Subsystem
	ChSteering base class
	ChSteering base class members
	ChSteering base class accessors
	ChSteering base class virtual methods
	Steering Templates
	Slide Number 90
	Slide Number 91
	JSON specification for Pitman arm
	JSON specification for Pitman arm
	Steering Templates
	Slide Number 95
	Slide Number 96
	JSON specification file for rack-pinion
	JSON specification file for rack-pinion
	Antiroll-bar Subsystem
	ChAntirollBar base class
	ChAntirollBar base class virtual methods
	Antiroll-bar Templates
	Simple anti-roll bar (model)
	Simple anti-roll bar (template parameters)
	Simple anti-roll bar (template parameters)
	JSON specification file for RSD antiroll-bar
	Driveline Subsystem
	ChDriveline base class
	ChDriveline base class members
	ChDriveline base class accessors and methods
	ChDriveline base class virtual methods
	Driveline Templates
	Slide Number 113
	JSON specification file for ShaftsDriveline4WD
	Driveline Templates
	Slide Number 116
	JSON specification file for ShaftsDriveline2WD
	Sample simulations
	ISO double lane change
	Acceleration/braking test (Fiala tires)
	Rigid mesh terrain

