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1. ANCF introduction
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Why Chrono::FEA?

Finite elements are necessary for the analysis of dynamical systems
Mechanical components deform in addition to translating and rotating

Flexible bodies interact dynamically with other physical components though contact
forces, force elements, constraints, etc.

Chrono::FEA features 3 main formulations for describing flexible bodies or solids:

The Absolute Nodal Coordinate Formulation (ANCF)— Large deformation (arbitrary rotation and
translation)

The Co-rotational Formulation —Small deformation (arbitrary rotation and translation)

Traditional Lagrangian Finite Elements —Good for large deformation (automatically includes
arbitrary rotation and translation)
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Isoparametric finite elements

Free online material: “The Isoparametric Representation”, Chapter 16, C. Felippa

In isoparametric finite elements, geometry and displacement fields are given by the same parametric
representation

Note: In FE/FFR, beam/shell finite elements are NOT isoparametric —infinitesimal angles. Shape functions
describe displacements, but not geometry.

The basic principle of isoparametric elements is that the interpolation functions for the
displacements are also used to represent the geometry of the element.

Isoparametric formulation makes it straightforward to have non-rectangular, curved elements
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Isoparametric finite elements

Element
coordinates |:' > Geometry
Traditional isoparametric elements only have position ¢ ¢
coordinates ,
Displacements are expressed in terms of the natural (local) J/ Non Isoparametric
coordinates and then differentiated with respect to global
coordinates. Accordingly, a transformation matrix [J], called Shape functions ﬁ> Displacement
Jacobian, is produced. S(£,1,¢) interpolation
Geometry
Shape functions
co%?dr}qneaqgs :> :
EN ¢ $($.7.¢)

JZ/\ Displacement

Isoparametric interpolation
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Isoparametric finite elements




Absolute nodal coordinate formulation =0 @

ANCF was introduced in 1996 by Prof. Shabana of U. of Illinois

Uses isoparametric elements with the addition of position vector gradients. That is,
nodal coordinates are position vectors and its gradient vectors.

Position vector gradients univocally define nodal rotation and do not lead to a
redundancy problem: Position and rotations being interpolated independently

Note that the defining feature of this method is the use of extensible gradient
vectors, which is built upon a kinematic description

ort

Free document on ANCF implementation in Chrono: http://sbel.wisc.edu/documents/TR-Z(ﬁG-ll.pdf
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Absolute nodal coordinate formulation

Only vectorial quantities are interpolated
Fully non-incremental method: Small increments assumption not needed
Leads to a constant mass matrix and a “complex’’ definition of material forces

ANCF elements can be structural-based (beams, shells) or solid-based (bricks,
tetrahedra)

Since ANCF does not impose any kinematic description, special care is put for the
development of beam/shell element
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ANCF beam elements types

“Gradient-deficient”

e Do not necessarily define a volume
e Structural strains

o - Ir, XZXX|’ e :E(rTrX _1)
rd 2

e No torsion or shear

“Fully-parameterized”
e Full set of gradients
e Deformation gradient tensor

F=§—>r(:[rxp r, rz"]
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ANCF beam element formulation types

Structural Approach: Geometries of the solid is used to simplify
strains and/or make strain definition more precise. This usually
involves that there is one or two dimensions of the solid smaller than
the other (s)

Continuum-Based Approach: It involves strain definitions based on a
fully 3D approach: Deformation gradient F.
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ANCEF shell element types

“Gradient-deficient”

e For structural approaches

e Contains in-plane gradient vectors
e Avoids some types of locking

“Fully-parameterized”

e Indicated for continuum-based approaches
e One of the original elements

e Severe locking

11




Constraints with ANCF finite elements G0 @

Any flexible body can be constrained to any other rigid/flexible by using constraints
This is useful to build general-purpose mechanical systems; e.g. robotic arms.
Material points and directions are defined in the flexible body

Example. Spherical joint between two ANCF beam nodes
Node j of beam 1

Node i of beam 2




Constraints to rigid bodies

Position and direction
constraints to rigid
bodies, aka fixed

Position; node i, body j

r'=R'+A'T"
Direction:

r'|=A'd"
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Constraints to rigid bodies

Example. Crankshaft mechanism with ANCF beam

e Beam has the following coordinates
Position vector (3D)
r, Cross section plane
r, cross section plane
r,perpendicular to r, in the undeformed configuration

Revolute

AN

r % Z ,
Beam cross section X

Prismatic

14
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Constraints to rigid bodies

g1’ T Revolute

P
= fode TS
?/Cj//j r, body 1
/ Z, SO nOde n
/ =y _-“.‘_._,‘ ~ _ a
Beam cross section zY - = 'od.y_3 |
Revolute X Prismatic
= Position

C(R;,0;,r',r.,r;) =R} +A(9i)ﬁp —r =0

y'“z

= Local vector in flexible body is parallel to local vector in rigid body: Their global
direction define the mechanical joint’s axis of revolution

C(0: rt) =(A*(0}) ) ri=0

C(0:.rh) =(A}(0})g") ri=0

y

= Where gl, flare local vectors of body 1 perpendicular to joint axis

15
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Constraints to rigid bodies
g T Revolute
oy NV 4
=7 nodeﬁ\1"\'"“7-?:_.:»\
f/@% Iy body 1

Beam cross section ~

= Similar equations for prismatic/universal/... joints

= Jacobian of these constraint equations can be obtained in a similar manner to regular
rigid body constraints

= Jacobian may involve coordinates from rigid bodies, one type of ANCF finite element,
another type of ANCF element, etc.

16
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Constraints to rigid bodies

Constraint relationships and their derivatives can be obtained also for
flexible body/flexible body constraints

Key to defining these joints is

Identify what flexible body coordinates represent. E.g. Do they define a fiber orientation?
Do they contain a vector perpendicular to the beam cross section?

Constraints to ANCF bodies also define boundary conditions. These
constraints are not straightforward to come up with because of the
relations between them and the strains, which often define the boundary
conditions.
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2. ANCF beams

18
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ANCF: Kinematic definition and kinetic energy

In general, the position of an ANCF element may be defined as

\r(x, Y, z,t) = S(X,Y,2) CL(Q

$
Position of an arbitrary ~ Space-dependent  Vector of nodal
point within the element shape function ~degrees of freedom

The velocity of any point within the element can be straightforwardly obtained as

f(x, Y, z,t} = S(X,Y,2) CL(:[_)J

v
Velocity of an arbitrary Space-dependent Vector of
point within the element shape function generalized velocities

The kinetic energy takes, in general, the following expression

T =%jprTr dv =%qT|\/|q, where M = [ pS™S dV = constant
V \Y
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ANCF Cable: Virtual work of elastic forces [In Chrono]

o +1
J+1 rx

* Have one position vector gradient pointing along the beam
centerline
e Account for axial and bending strains

* Nodal coordinates
) T T
r*"”} q;(t) =[ro ro,x]

* Shape functions: &£=x/I, £=0,...,1

Position field of an ANCF beam element s, =1-3&52+2&°
r:[sll3x3 Solas Silas S4|3x3][Q1T q§]=S(§)q S, = | :§—2§2 +§3)
Beam longitudinal position vector gradient S, =357 —2&°

rx:Sx(g)q S = :_§2+§3)



ANCF Cable: Virtual work of elastic forces

o +1
J+1 rx

The virtual of the elastic forces for the gradient-
deficient beam element may be defined as

= [[EAe, 88, + El ko
L

where roxry]
g ==(rjr,-1) and =
2

2
d

r

are the axial Green-Lagrange strain and bending
curvature

Sy,
s = PROJECT
% Z,CHRONO

e (Calculation of strain variations for virtual work

e, :Q(E(rjrx —1)j5e = M e
oe\ 2 oe

e For bending curvature:

|r XTI

xx|

3
K=— f=|r,xry|, g=]r]
9 Inf
5251(5 1(gﬂ_fﬁg)
oe g oe oe

21
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ANCF Cable: Equations of motion

o +1
rx
Mass matrix easily obtained from kinetic energy
T =3jprTr 4V = 2¢"Me,
27 2
.
S(CJE)[PJ r/ /" I';H T where My, = pA\_!‘pS S dx = constant

Gravity forces

The generalized internal force may be written as... oW, =F, -or= ij dV -Sée =gm-Sée
\Y
i i i Qg =S (mg)
Qe 1 Qe'b 12x1 + Qe'a 12a
Equations of motion after assembling finite elements

IEI 12(9 o — f agjd§+IEA3(rXTrX)%(rXT arxjdé G &
.9 oe oe ) 1 oe ) B

ox o5, Mé=Q, +Q,

oe oe

22
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Generalized external forces: ANCF cable

Principle of virtual work may be used to add external forces of diverse nature
e Point forces
e Linear forces, e.g. evenly (or not) distributed pressure

e Volumetric forces

23
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Generalized external forces: Point load

j+1
r-X

Point load:
e concentrated load
e acts on one finite element at any point

e does not require numerical integration

- i - ﬁ
O‘V(ﬂ — FPTOI'P — Q Oe
el o
N~~~ —~—
Generalized  Variation of
force generalized coordinates

Q(:Z — ST (EP) FP

Force may depend on time, other coordinates, etc.

24



S,

FPROJECT
° ° ’z,,’%mF%DNO
Generalized external forces: Linear pressure
j+1
j+1
Pty
""""""" Linear pressure:
r) e e distributed load
Z Y ".0.}"’
"‘ : e acts normal to the surface
X e use Principle of Virtual Work to obtain generalized counterpart

Numerically solve the integral: Gauss Quadraturc

constant Det. of Jacobian of A
linear pressure the transformation 5y o
Y T
T ’ N T
Qures=—/ S" (&) F .n det|J] dr = E w; ST (&) Fin (&;) det|J]
L direction =0

Shape function of load 25
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Generalized external forces: Gravity load

j+1

------------
-------
we®
.
.

Gravity load:

-
.
. .
. .
o o*

” Mo e volumetric, distributed load
l 1 8 e acts along a global direction
X e do not depend on the finite element’s coordinates
cht_ of Jafcobiarl_ of Numerically solve the 11‘5&0@;1‘&1:@&1155 Quadraturec
densit the transformation < N
. y " n; .
Qgrav =—A [ S"(§ p g det[J] der = A E w;S* (&) pg det[J]
L " : i=0
Shape function acceleration of ’

gravity -



ANCEF fully parameterized beam e @ @

e Fully parameterized beam: The most straightforward beam element
e 2 nodes; one position vector and three position vector gradients: x, y, and z
* An elastic line approach has been used to alleviate Poisson locking (we’ll see more in future
lectures)
e Itallows for 3D definition of elastic forces
e Severe locking; i.e. bad convergence properties
e Correct results not achieved even with fine discretization or
 Need many elements to obtain correct results

Interpolation:

e Linearinyand z (cross section plane)
e Poisson locking: Poisson effect
e Cubicin longitudinal direction
e Shear locking
* FE locking: Excessive (unwanted)
stiffness in some FE deformation
modes
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3-node shear deformable ANCF beam [In Chrono]

i+2
r.;’

e Developed in Nachbagauer et al, 2013, “Structural and Continuum Mechanics Approaches for a 3D Shear
Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples”, JCND, Vol. 8,
021004-1

e Avoid locking issues

e Can use structural (Reissner) and continuum-based approaches

* Describe two bending strains, two shears, torsion, and stretch

28



iy,
FPROJECT

3-node shear deformable ANCF beam

+2
l‘;’

e Quadratic shape functions in longitudinal direction
e Linear interpolation over the cross section

e Reference of SF taken at the center of the element
—node 3.

%
I
|
| v
~—
=
|
(VAN
N—
w
N
I
S
|:U')
(0p)
w
I
N
%
| p——|
I
-
w
—t
oD
(@)
o
D
| I—

2
S, :§(1+ &), s;=1ns,, Ss=¢s,[Second node]

v
\‘
Il
I

(§-1)(£+1), s, =75, 5, =, [ Third node]

29
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3-node shear deformable ANCF beam: Structural mecha;inmics

1) Create a coord. syst. at cross section

Acsz[el €, 63]

2) Stretch and shear defined as
r,=er-1T,=er,,=er,r, :5%)(

3) Bending and torsion

0 -k, K,
k=A"A', =| k, O

—K; |, k =axial(k)

Using SM approach, the elastic energy of the element is

L

2

usv =%j " diag(EA, GAk,, GAk, )T 4" diag(GJ, El,, EL.)k d&
L
2

Stretch and shear Bending and torsion

30
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3-node shear deformable ANCF beam: Structural mechanics

e Previous strain measures must be objective (they are!)

* Inertia matrix calculation is straightforward

* Generalized internal force must account for cross section
area frame: Not as straightforward as CB approach

e This element has been validated for:
e Small deformation (analytical solution)
* Large deformation: Torsional moment (180 deg. twist)
e Eigenfrequencies: Analytical solution of Timoshenko beam
|t has additional coordinates. Additional cross section elastic energy must be introduced (not accounted

for previously) 31
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The work of elastic forces can be derived from nonlinear continuum mechan-
ics, using the relation between the nonlinear Green-Lagrange strain tensor and
the second Piola-Kirchhoff stress tensor. The deformation oradient is defined as
-8’!‘1 (:97'1 8"!‘1 ] B (:97'01 8"!‘()1 8’."(]1 11
o0& on oC o0& an oC
F — Or __ Or 0& __ | Ors Ora Ora Orp2 Oro2 Oro2
~ Org  0for, | 06  On  oc D¢ an ac
Ora Ors Irs Oro3 Oro3 Idro3
Lo on oC ] L o¢ on ¢
Accounts for distorted 32

initial configurations



3-node shear deformable ANCF beam: Continuum-based

Possibly distorted reference, captured by J = D¢

8H)
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The strain strain relation is given by ¢ = De where D is the elastic matrix

and € the Green-Lagrange strain vector.

The elasticity matrix is given (for isotropic materials), as:

_ Ev
D = (14+v)(1—2v)

1 —v
v

1
1
0
0
0

0
0

0

0
0
0

1—2v
2v

0

ko

0
0
0
0
0

1—2v
22U

k3

Become shear
modulus G

where theory of thick beams (Timoshenko) has been assumed —ks and ks are
Timoshenko shear correction factors, dependent on beam cross section shape
and material properties.

33
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3-node shear deformable ANCF beam: Continuum-based

The elastic energy, to be used to obtain generalized internal forces, may then
be written as:
Wi M/ B
U =2 [ [ [ eYodet(J)dédndC
_Hf"/z _H/2 _L/2
Poisson ratio v couples e,, with ¢,, and €,.. This coupling if integrated
over the volume of this element causes unwanted stiffness of the bending mode
-that is, locking. To avoid this, one type of selective integration is used:

1-1"’/2 H'/Q L/Q .-'J/Q
USP =5 [ [ [ €'D%det(J)dédnd¢+sHW [ e"D¥edet (J)d¢
Wy _H [y L/, —5/2
In which
D= DY + D (v)
~~ N —

Matrix of elastic coeff.

. . Matrix of elastic coeff.
with no Poisson effect

with Poisson effect
e Elastic forces are integrated using Gauss quadrature, as usual

e This element, in the continuum-based flavor is available in Chrono

e [t captures many more modes than the “cable” element 34
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3. ANCF shells

35
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“In many problems of deformation of shells the bending stresses can be neglected, and only the
stresses due to strain in the middle surface of the shell need be considered. Take, as an example, a
thin spherical container submitted to the action of a uniformly distributed internal pressure
normal to the surface of the shell. Under this action, the middle surface of the shell undergoes
a uniform strain; and since the thickness of the shell is small, the tensile stresses can be assumed as
uniformly distributed across the thickness.”

Examples

e Balloon
e Pressurized tank

e Tire (in many scenarios)

36
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ANCF shell elements

In terms of formulations of finite elements:
e Plate elements look for capturing bending curvature

e Shell elements are based on in-plane strains

ANCEF shell/plate elements may be categorized according to
e Whether tranverse shear is considered (thick or thin)

e The set of position gradient vectors used

ANCEF shell/plate elements may also suffer from a variety of locking phenomena
e Shear

e Volumetric/Poisson

37
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ANCEF shell elements. Types

e Gradients r, and r,, thin plate

e Fully parameterized

g . _ . e Gradients are discontinuous
e (Gradients are continuous

e R e Structural based — plate formulation
e Continuum-based

T 9°rumia T 9%ria T 9%ria T
) . f{/ . — n - T;TJ'JI n - Irll 1 - 'I"l'l 1¢C
° Lockmg thin OxOx Oydy dxdy

n= T, X1y 38
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ANCEF shell elements. Types

ort

or* oxoy  or’

X o2
. 52 ) T . J°r : .
e Gradients r, and r,, and ﬁ—(}; thin plate ® Gradients r, and r,, and D20y thin plate
e Gradients are continuous e 8 nodes
® Strllctllral ]:)ased plate fOl‘IIllﬂatIOH L] COI]_tiIlllllIIl—l)&SCd.: St. VCIlELIlt—KiI'CthH Irl‘cl.tuCI'iEﬂ
— T 0 Qr mid T 0] Qrmid T o) 2I"mi(l B ) .
Kthin = | F5" 00 5= - s s e Extends membrane theory to out of plane strains
_ TaXTy _ T
n= i E=05(FTF — 1) .
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Chrono’s ANCF shell element: Bilinear

or’

oz

e Gradient r., thick plate — integration over volume
e 4 Nodes

e Bilinear: Product of linear shape functions
51 = %(1—5)(1—?7) Sp = %(1+€)(1—77)
s3 =7 (1+8 0 +n)ss=70-81+n)

e Suffers from locking if not alleviated

e Continuum-based approach

e Includes out-of-plane strains

Kinematics of the element:
Fiber direction

r(fﬂ?at) — \I:m(fanatl +Z a(fﬂ?t)

Position of mid-plane e
Position on

shell thickness

http://sbel.wisc.edu/documents/TR-2016-11.pdf]

40
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Chrono’s ANCF shell element

Note that shape functions, position vector gradients, angles, transformation matrices, intermediate oper-
ations between frames of reference, and strains are adimensional. The position of an arbitrary point in the
shell may be described as

{2

' 2t) =Sty e,
#'S?

Tre

r{’:(;z:

where the combined shape function matrix is given by S* = [S! |. Similarly, the coordinates of the

™m
T

element may be grouped together as e’ = [(e;)

g

- T . . ..
(e;) |, where (e}) (e}) are the element position and
gradient coordinates.

41
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Chrono’s ANCF shell element

Relying on this kinematic description of the shell element, the Green-Lagrange
strain tensor may be calculated as

Elementi

1 NT
((F") Fi_ I)
2
where F" is the deformation gradient matrix defined as the current configuration
over the reference configuration. Using the current absolute nodal coordinates.

this matrix may be defined as (chain rule)

i or'  Or' (9X'
COXE oxt\ ox!

The strain tensor can then expressed in vector form in the following manner

1 7 E?ﬁ ) 1 1

” T
_ K )
€ = "gr_rs_r yy Yoy €zz Txz Pyz}

Membrane strains

42




Chrono’s ANCF shell element il

The clastic internal forces are spatially integrated over the element volume using Gaussian quadrature:

.= : , 1V
k Joi oo dVo

; L0 OW (¢ + eEAY)
-,
Vo

where ¢ is the compatible strain, obtained from the displacement field using “Assumed Natural Strain”
interpolation to avoid transver/in-plane shear. Further, the term Wi(e® + ¢£4%) denotes the strain energy
density function, which must be obtained by adding an enhanced strain contribution, ¢4°. The second
. ) . . . . . amf,r-f, 8(.‘ eﬁ:“’l S . .. .
Piola—Kirchhoff stress tensor is obtained from the relatior o' = ( - ). The addition of assumed

natural strains and enhanced strains finds justifications of the mixed variational principle by Hu—Washizu

43
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Shell strains: Orthotropic and curvilinear reference -

Due to manufacturing processes, the initial configuration isn’t always “straight”;
initial curved geometries of the flexible bodies need to be considered

i or'  or' (8Xi ) !

T OXi ox\ O

r’: Current configuration; X*: Initial configuration; x*: Element reference

- 9xi d(Sey) . :
The tensor J* = (%) = (3){',;0) is constant and can be inverted. The gra-

dient tensor F* defines strains in the global frame from a straight configuration
as E' = 0.5 - (F'TF! — 1)

44
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Shell strains: Orthotropic and curvilinear reference

In the curved initial configuration, the position of a material point in the shell
is given by

ro(x,y,2) = rnolT,y) + 2r.0(2,y)

The element local coordinate system is a Lagrangian coordinate system in which
strains are to be measured. This frame of reference defines covariant base vectors
along the three curvilinear coordinate lines or

org Ir 1m0

(gO)] — 8T — 5 (x y) +Za§[]z (quy)
(80)> = G = %550 (2 y) + 258 (2. )

(go)g — %—4 — Iz (-’1’17?/)

45
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Shell strains: Orthotropic and curvilinear reference

The covariant base vector along the coordinate lines in the current configuration
is given by

8 T YA 1\8 = Y1
(8); = (z— = 85?(%5/) +252(2,y)
(8): = 5y = By (2. y) + 25, (2,9)
(8); = 5= = r2(2,y)

Current deformed reference

Each component of the covariant Green strain tensor in the curvilinear system
is defined as

Ery=2%(Cry—CY),

where Cr; = (g)r - (g)s and C}, = (go)r - (g0)s

46




Shell strains: Orthotropic and curvilinear reference

To define the Green strain tensor regularized to its orthonormal frame, we
first orthonormalize the covariant base at the initial configuration

(g0)1
S (80);|
(90)3 = ‘r2|

This frame defines the actual frame in which the material properties are defined.
If the material is orthotropic, directions in the material can be considered. For
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example,
In which, theta is
Or . | ‘
(ep); = (ep), cosb+ (ep),sind the angle 6 defines a
Or principal direction in the
( 0)3 - (e()>3

- material (used in tires:
(eo)or = — (eg), sinf + (ey), cost steel belts).
2 1 2

47
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Shell strains: Orthotropic and curvilinear reference

In matrix form, the coefficients of contravariance transformation may be
obtained from the Jacobian of the position vectors at the reference configuration
and the local Cartesian frame including anisotropy in the following form

C'1
_ Or Or Or
B=1| Y 9 { (eo); (en)y (eo); }

-1 .
| Y s

1
H

H

10T O —1 1 10 9 - - 1o 1T AP —G_P—

where Y |, is the ¢ column of the inverse of Y = §5 = | (g80); (80)y 1o |
The components of the 3-by-3 matrix 3 are used to set up a transformation
matrix necessary for the calculation of strains:

B11 B2 s
B =1 P21 22 [o3

B31 P2 B33

where 3;; = 5(i, j).

48
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Shell strains: Orthotropic and curvilinear reference

Finally the compatible strains are calculated as:

1 ¢ gi1  gi12 913 (90)11 (90)12 (90)13
5256 g21 922  g23 — (90)21 (90)22 (90)23
g31 932 g33 (90)31 (90)32 (90)33

€11 €12

€21 £€22

€31 €32

where ¢;; = (g): - (g); and (g0)i; = (80)i - (80) ;-

|

1

o
w

B =
3

£
[
E
-
E

33

Final expression! These strains are

related to constitutive equations

49



R =
FPROJECT s
Z,CHRONO el

I e

Shell strains: Orthotropic and curvilinear reference

A few words about the derivations in previous slides

e It is general: No membrane-strain assumption, i.e. tully 3D
e It must be accounted for in the numerical implementation

e It must be considered when obtaining the generalized elastic/material
forces

50
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Generalized forces —continuum based approach

The energy for a linear clastic material:

a
R\ oU,
Ua — €T Fe dI/[] — Qn — ¢
oe
%
Generalized internal forces...
v iT s il (1 41 Al
p e+ . . oe' (e}, e, 3") . ., . . . ‘
Q. = E'e'dV, = () )ELEL (ef.e",B") dVy =
- ) Oe , de
‘/f-';" V.',j_
. 8 EI,'$ € Ex Evz 61;7 £ = . p . P .
[ yy Yy Y } E?E;, (eE}: e@jﬁa) dVO?
oe

Vv i

where o is the second Piola-Kirchhoff stress tensor, and dV/jj is the (infinitesimal) element volume
at the initial configuration

e Integrals are integrated numerically using Gauss points

e Order of integration depends on order of integrand (in turn, depends on shape functions’)
Full and reduced
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Generalized forces —continuum based approach

Oe 1 O gi1 gi12 413
— = _pg' = g21 G22 Ggo3| B =

de 2° Oe
1931 g32  G33]
—
%—§BT%[eTSESIe e’STS e e'S'S e e'STS.e e'SIS.e e'S!'S.e|3=
Oe 1 /
ed:%:éﬁq S;S,e S,;S,e S;Se S!S.e S!S.e S;S.e|p3

Beta matrices need manipulations to
accommodate strain vector
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Jacobian of internal forces

Jacobian of internal forces is needed when implicit numerical integration is
needed

e Computationally more demanding than internal forces

e Accurate enough approximation needed for convergence

( )

2.T
T 0Q. _ 0? T _ T 0%e Oe’ 1 Oe
Ee = de ~— 0Oe? ( E&') o e kB He2 e E@e
Integrand of elastic Algebraic manupulations /
energy needed for this term

e More details on this, in Chrono implementation

e E is a matrix of elastic coeflicients that contain moduli of elasticity, rigid-
ity, and Poisson ratios in the 3 directions: E,, E,, E,, G., Gy, G, V,,
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Mass matrix

The mass matrix of the element is given by
i i (qint Qi1
M' = / po(SY) S'dV),
Ve

which remains constant throughout the simulation. The equations of motion
may be written as

il (Vi (al Al i SRR
M'é' = Q(e", &', a')+Q.(e, e t),
Internal parameters
where Q. is the element elastic force vector and Q. is the external force vector.
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Generalized external forces

Principal of virtual work may be used to add external forces of diverse nature
e Point forces
e Surface forces, e.g. evenly (or not) distributed pressure

e Volumetric forces
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Generalized external forces: Point load

Point load:

e concentrated load
e acts on one finite element at any point

e does not require numerical integration

oW, = Flort = QZ; de
Generalized Variation of

force generalized forces

ch =St (gPa 77P) F’
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Generalized external forces: Pressure

Pressure:

e distributed load
e acts normal to the surface

e use Principle of Virtual Work to obtain generalized counterpart

Normal definition:
dependent on element’s

kinematics . Numerically solve the integral: Gauss Quadrature
constant Det. of Jacobian of N
pressure the transformation ’nj . ~
r T
Qires ==/ \—S (5,._/’ ) b Nt det|J] d4 = wiw;S* (&, m5)pn (&, 15) det[J]
4 y =0 1=0
Shape function normal to j
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Animation: ANCF Shell + Initial Configuration + Internal Pressure”
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Generalized external forces: Gravity load

Gravity load:

e volumetric, distributed load
e acts along a global direction

e do not depend on the finite element’s coordinates

_ Numerically solve the integral: Gauss Quadrature
Det. of Jacobian of

density the transformation ’nk n;, mn % N
r T
Qures == J § &n:¢) “p - det[J]  dV=) % > wiwjwpS" (&1, Cr)pg det]J]
Vo ~~ d — L =
Shape function acceleration of k=0 j=0 i=0
gravity
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ANCF in Chrono

Chrono::FEA::ANCF ecosystem still growing
e 3-node shear deformable beam element implemented in the last month

e New higher-order shell element underway
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