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ANCF Theoretical Background
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1. ANCF introduction

2



Why Chrono::FEA?

 Finite elements are necessary for the analysis of dynamical systems
 Mechanical components deform in addition to translating and rotating
 Flexible bodies interact dynamically with other physical components though contact 

forces, force elements, constraints, etc.

 Chrono::FEA features 3 main formulations for describing flexible bodies or solids:

 The Absolute Nodal Coordinate Formulation (ANCF)– Large deformation (arbitrary rotation and 
translation)

 The Co-rotational Formulation –Small deformation (arbitrary rotation and translation)
 Traditional Lagrangian Finite Elements –Good for large deformation (automatically includes 

arbitrary rotation and translation)
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Isoparametric finite elements
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 Free online material: “The Isoparametric Representation”, Chapter 16, C. Felippa
 In isoparametric finite elements, geometry and displacement fields are given by the same parametric 

representation
 Note: In FE/FFR, beam/shell finite elements are NOT isoparametric –infinitesimal angles. Shape functions 

describe displacements, but not geometry.
 The basic principle of isoparametric elements is that the interpolation functions for the 

displacements are also used to represent the geometry of the element.
 Isoparametric formulation makes it straightforward to have non-rectangular, curved elements



Isoparametric finite elements
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• Traditional isoparametric elements only have position 
coordinates

• Displacements are expressed in terms of the natural (local) 
coordinates and then differentiated with respect to global 
coordinates. Accordingly, a transformation matrix [J], called 
Jacobian, is produced.

Non Isoparametric

Isoparametric



Isoparametric finite elements
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Absolute nodal coordinate formulation
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 ANCF was introduced in 1996 by Prof. Shabana of U. of Illinois
 Uses isoparametric elements with the addition of position vector gradients. That is, 

nodal coordinates are position vectors and its gradient vectors.
 Position vector gradients univocally define nodal rotation and do not lead to a 

redundancy problem: Position and rotations being interpolated independently
 Note that the defining feature of this method is the use of extensible gradient 

vectors, which is built upon a kinematic description

Free document on ANCF implementation in Chrono: http://sbel.wisc.edu/documents/TR-2016-11.pdf



Absolute nodal coordinate formulation
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 Only vectorial quantities are interpolated
 Fully non-incremental method: Small increments assumption not needed
 Leads to a constant mass matrix and a “complex’’ definition of material forces
 ANCF elements can be structural-based (beams, shells) or solid-based (bricks, 

tetrahedra)
 Since ANCF does not impose any kinematic description, special care is put for the 

development of beam/shell element



ANCF beam elements types
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 “Gradient-deficient”
 Do not necessarily define a volume
 Structural strains

 No torsion or shear

 “Fully-parameterized”
 Full set of gradients
 Deformation gradient tensor
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ANCF beam element formulation types
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 Structural Approach: Geometries of the solid is used to simplify 
strains and/or make strain definition more precise. This usually 
involves that there is one or two dimensions of the solid smaller than 
the other (s)

 Continuum-Based Approach: It involves strain definitions based on a 
fully 3D approach: Deformation gradient F.  



ANCF shell element types
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 “Gradient-deficient”
 For structural approaches
 Contains in-plane gradient vectors
 Avoids some types of locking

 “Fully-parameterized”
 Indicated for continuum-based approaches
 One of the original elements
 Severe locking



Constraints with ANCF finite elements
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 Any flexible body can be constrained to any other rigid/flexible by using constraints
 This is useful to build general-purpose mechanical systems; e.g. robotic arms.
 Material points and directions are defined in the flexible body

 Example. Spherical joint between two ANCF beam nodes
 Node j of beam 1
 Node i of beam 2

i j=r r



Constraints to rigid bodies
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 Position and direction 
constraints to rigid 
bodies, aka fixed

 Position; node i, body j

 Direction:

i j j P= +r R A u

i j P
x =r A d






Constraints to rigid bodies
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 Example. Crankshaft mechanism with ANCF beam
 Beam has the following coordinates

 Position vector (3D)
 ry cross section plane
 rz cross section plane
 ry perpendicular to rz in the undeformed configuration

Beam cross section



Constraints to rigid bodies
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Beam cross section
Revolute

 Position

 Local vector in flexible body is parallel to local vector in rigid body: Their global 
direction define the mechanical joint’s axis of revolution

 Where               are local vectors of body 1 perpendicular to joint axis 
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Constraints to rigid bodies
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Beam cross section

 Similar equations for prismatic/universal/… joints
 Jacobian of these constraint equations can be obtained in a similar manner to regular 

rigid body constraints
 Jacobian may involve coordinates from rigid bodies, one type of ANCF finite element, 

another type of ANCF element, etc.



Constraints to rigid bodies
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 Constraint relationships and their derivatives can be obtained also for 
flexible body/flexible body constraints

 Key to defining these joints is
 Identify what flexible body coordinates represent. E.g. Do they define a fiber orientation? 

Do they contain a vector perpendicular to the beam cross section?

 Constraints to ANCF bodies also define boundary conditions. These 
constraints are not straightforward to come up with because of the 
relations between them and the strains, which often define the boundary 
conditions.



2. ANCF beams
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ANCF: Kinematic definition and kinetic energy
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In general, the position of an ANCF element may be defined as 


Vector of nodal Position of an arbitrary Space-dependent 

degrees of freedompoint within the element shape function

( , , , ) ( , , ) ( )x y z t x y z t=r S q
 

The velocity of any point within the element can be straightforwardly obtained as


Vector of Velocity of an arbitrary Space-dependent 

generalized velocitiespoint within the element shape function

( , , , ) ( , , ) ( )x y z t x y z t=r S q 
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The kinetic energy takes, in general, the following expression
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ANCF Cable: Virtual work of elastic forces [In Chrono]
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• Have one position vector gradient pointing along the beam 
centerline

• Account for axial and bending strains

• Nodal coordinates 

• Shape functions: 

Position field of an ANCF beam element
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ANCF Cable: Virtual work of elastic forces
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are the axial Green-Lagrange strain and bending 
curvature

• Calculation of strain variations for virtual work

• For bending curvature:
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ANCF Cable: Equations of motion
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The generalized internal force may be written as…
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Mass matrix easily obtained from kinetic energy

Gravity forces
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Generalized external forces: ANCF cable

23



Generalized external forces: Point load
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Generalized external forces: Linear pressure
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Generalized external forces: Gravity load
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ANCF fully parameterized beam
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• Fully parameterized beam: The most straightforward beam element
• 2 nodes; one position vector and three position vector gradients: x, y, and z
• An elastic line approach has been used to alleviate Poisson locking (we’ll see more in future 

lectures)
• It allows for 3D definition of elastic forces

• Severe locking; i.e. bad convergence properties
• Correct results not achieved even with fine discretization or
• Need many elements to obtain correct results

Interpolation:

• Linear in y and z (cross section plane)
• Poisson locking: Poisson effect

• Cubic in longitudinal direction
• Shear locking
• FE locking: Excessive (unwanted) 

stiffness in some FE deformation 
modes



3-node shear deformable ANCF beam [In Chrono]
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• Developed in Nachbagauer et al, 2013, “Structural and Continuum Mechanics Approaches for a 3D Shear 
Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples”, JCND, Vol. 8, 
021004-1

• Avoid locking issues
• Can use structural (Reissner) and continuum-based approaches
• Describe two bending strains, two shears, torsion, and stretch



3-node shear deformable ANCF beam
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• Quadratic shape functions in longitudinal direction
• Linear interpolation over the cross section
• Reference of SF taken at the center of the element 

–node 3.



3-node shear deformable ANCF beam: Structural mechanics
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Stretch and shear Bending and torsion

1) Create a coord. syst. at cross section

2) Stretch and shear defined as

3) Bending and torsion 
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3-node shear deformable ANCF beam: Structural mechanics
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• Previous strain measures must be objective (they are!)
• Inertia matrix calculation is straightforward
• Generalized internal force must account for cross section 

area frame: Not as straightforward as CB approach

• This element has been validated for:
• Small deformation (analytical solution)
• Large deformation: Torsional moment (180 deg. twist)
• Eigenfrequencies: Analytical solution of Timoshenko beam

• It has additional coordinates. Additional cross section elastic energy must be introduced (not accounted 
for previously)



3-node shear deformable ANCF beam : Continuum-based 
[In Chrono]

32Accounts for distorted 
initial configurations



3-node shear deformable ANCF beam: Continuum-based
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Become shear 
modulus G 



3-node shear deformable ANCF beam: Continuum-based
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3. ANCF shells
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Shells
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ANCF shell elements
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ANCF shell elements. Types
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ANCF shell elements. Types
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Chrono’s ANCF shell element: Bilinear
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Chrono’s ANCF shell element

41



Chrono’s ANCF shell element
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Membrane strains

Element i
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Chrono’s ANCF shell element
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Shell strains: Orthotropic and curvilinear reference
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Shell strains: Orthotropic and curvilinear reference
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Current deformed reference

Shell strains: Orthotropic and curvilinear reference
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Shell strains: Orthotropic and curvilinear reference
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Shell strains: Orthotropic and curvilinear reference
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Final expression! These strains are
related to constitutive equations

Shell strains: Orthotropic and curvilinear reference
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Shell strains: Orthotropic and curvilinear reference



Generalized forces –continuum based approach

51Full and reduced
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Beta matrices need manipulations to 
accommodate strain vector

Generalized forces –continuum based approach



Jacobian of internal forces
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Integrand of elastic
energy



Mass matrix
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Internal parameters



Generalized external forces
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Generalized external forces: Point load
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Generalized external forces: Pressure
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Normal definition: 
dependent on element’s 

kinematics



Animation: ANCF Shell + Initial Configuration + Internal Pressure
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Generalized external forces: Gravity load
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ANCF in Chrono
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