
Time integration
DVI and HHT time stepping methods in Chrono

Time Integration in Chrono

• Two classes of time stepping methods in Chrono

• Time steppers for smooth dynamics
• Classical multibody dynamics – rigid and flexible connected through joints
• FEA
• Fluid solid interaction problems

• Time steppers for non-smooth dynamics
• Scenarios w/ friction and contact

2

Time Integration – Smooth Dynamics

• Smooth dynamics:
• Equations of Motion: formulated as Differential Algebraic Equations (DAE)
• Time-stepping methods:

• HHT
• Euler implicit
• Euler semi-implicit linearized
• Newmark

• Require solution of a linear system at each time step
• MINRES
• MKL
• MUMPS, etc.

• Discontinuous forces if any, are regularized via penalty
• Can still have friction and contact, but is “smoothed”

3

Time Integration – Non-smooth Dynamics

• Non-smooth dynamics:
• Equations of motion formulated as Differential Variational Inequality (DVI) Problems

• Time-stepping method:
• Euler implicit linearized (Anitescu-Trinkle)

• Required solver at each time step: Cone Complementarity Problem
• SOR
• Barzilai-Borwein
• APGD

• Set-valued and discontinuous forces: no need to be “smoothed”
•
• No support for FEA yet

4

Smooth dynamics - DAE
The HHT Time Stepper
Linear Solvers

5

Differential problems

• An Ordinary Differential Equation (ODE):

• A Differential Algebraic Equation (DAE)

• In implicit form:

• Introduces constraints g

The Chrono case

6

DAE Explicit Integrators

• Explicit integrators:

𝒙𝒙(𝑡𝑡 + Δ𝑡𝑡) = 𝑭𝑭(𝒙𝒙(𝑡𝑡))

• Very straightforward - they do not require solving linear systems
• Require very small time steps, due to stability reasons
• The stiffer the problem, the smaller the time step
• Lead to numerical drift when handling DAEs
• Used by traditional DEM granular dynamics simulators

7

DAE Implicit Integrators

• Implicit integrators:

𝑮𝑮 (𝒙𝒙(𝑡𝑡 + Δ𝑡𝑡) ,𝒙𝒙(𝑡𝑡)) = 𝟎𝟎

• Can use large time steps
• More complex: they find 𝒙𝒙(𝑡𝑡 + Δ𝑡𝑡) by solving a nonlinear system 𝑮𝑮 = 𝟎𝟎 with Newton Raphson

• Jacobians matrices of G are needed (ex. stiffness matrices, etc.)
• Require solution of one or more linear systems at each time step

• Useful both for ODEs and DAEs – for the latter, they treat the constraints well
• Used in FEA problems, handle stiffness well

8

DAE Implicit Integrators in Chrono

• Classical Euler implicit
• First order accurate, large numerical damping

• Euler semi-implicit linearized (1 step)
• First order accurate, large numerical damping
• Same time-stepping used for DVI non-smooth dynamics, it can use complementarity solvers

• Trapezoidal
• Second order accurate, no numerical damping
• Doesn’t work well with joints (kinematic constraints)

• Newmark
• Adjustable numerical damping, first order (except in particular case)

• HHT
• Second order accurate, adjustable numerical damping
• Most used integrator for FEA problems in Chrono

9

The HHT integrator

• The DAE problem is:

• The HHT time discretization is:

• A-stable for:
• 2-nd order accurate
• An alternative formulation exists for position-level HHT
• Adjustable parameter α : from 0 (no numerical damping; i.e., trapezoidal) to -1/3 (max numerical damping)

10

The HHT integrator

• The G (x(t+Δt) , x(t)) = 0 non-linear problem to solve is:

• Its Newton-Raphson step requires solving this linear system:

11

Configuring the Integrator in Chrono

• It can be changed with SetTimestepperType()
• Additional parameters via std::static_pointer_cast<...>(my_system.GetTimestepper())

// change the time integration to HHT:
my_system.SetTimestepperType(ChTimestepper::Type::HHT);
auto integrator = std::static_pointer_cast<ChTimestepperHHT>(my_system.GetTimestepper());
integrator->SetAlpha(-0.2);
integrator->SetMaxiters(8);
integrator->SetAbsTolerances(5e-05, 1.8e00);
integrator->SetMode(ChTimestepperHHT::POSITION);
integrator->SetModifiedNewton(false);
integrator->SetScaling(true);
integrator->SetVerbose(true);

// change the time integration to Euler, also suitable for NSC too (this is the default)
my_system.SetTimestepperType(ChTimestepper::Type::EULER_IMPLICIT_LINEARIZED);

12

Linear System Solvers

• All DAE solvers require solving a linear system

• Linear system solvers are independent from the time integrator
• One can mix and match

• Available linear system solvers
• MINRES (iterative solver, free)
• MKL (direct solver, requires license)
• MUMPS (direct solver, free)

• Moving forward:
• MUMPS with OpenBLAS since they are both free and licensed under BSD

13

Linear System Solvers: MINRES

• Available in the main Chrono unit
• A Krylov-type iterative solver
• Convergence might slow down when large mass or stiffness ratios are used
• Robust in case of redundant constraints
• Warm starting can be used to reuse last solution (faster solution)

// Change solver settings
my_system.SetSolverType(ChSolver::Type::MINRES);
my_system.SetSolverWarmStarting(true);
my_system.SetMaxItersSolverSpeed(200); // Max number of iterations for main solver
my_system.SetMaxItersSolverStab(200); // Used only by few time-integrators
my_system.SetTolForce(1e-13);

14

Linear System Solvers: MKL

• MKL Intel libraries must be licensed and installed on your system,
• Available in the optional Chrono::MKL unit (enable it in Cmake)
• Direct parallel solver: no iterations are needed
• Not robust in case of redundant constraints – avoid them!
• Cannot use SetSolverType(), you must create a solver and plug it in the ChSystem:

#include "chrono_mkl/ChSolverMKL.h"
...
// change the solver to MKL:
auto mkl_solver = std::make_shared<ChSolverMKL<>>();
my_system.SetSolver(mkl_solver);
mkl_solver->SetSparsityPatternLock(true);
mkl_solver->SetVerbose(true);

15

Linear System Solvers: MUMPS

• Work in progress to be wrapped up by mid January
• Direct parallel solver
• Developed in France/UK, relies on OpenBLAS, which developed in China
• Free solution, source code available for MUMPS & OpenBLAS

16

#include "chrono_mkl/ChSolverMUMPS.h"
...
// change the solver to MUMPS:
auto mumps_solver = std::make_shared<ChSolverMUMPS<>>();
my_system.SetSolver(mumps_solver);
mumps_solver->SetSparsityPatternLock(true);

Non-Smooth dynamics - NSC
The DVI time-stepper
The CCP solvers

17

Variational Inequalities

• Definition of Variational Inequality (VI):

• for continuous
• with closed and convex

(see Kinderleher and Stampacchia ,1980)

•Alternative formulation:

F(x)
x

y

F(x)

x

y

18

Differential Variational Inequality

• Differential Variational Inequality (DVI)

where is the set of solutions to the VI

• It is also a special class of Differential Inclusion (DI), dx/dt ∈ f (x,t)

19

Differential Inclusions: motivation
• Most differential problems can be posed as equalities like:

dx/dt = f (x,t)  ODE, DAE , ok

• But some problems require inequalities or inclusions like

dx/dt ∈ f (x,t)  Differential Inclusion! (DI)

• Example: a flywheel with brake torque and applied torque (looks simple?!)

• J dω/dt = Mf (ω) +Me(t) where Mf = - Mf max if ω >0
and Mf = Mf max if ω <0

• All ODE integrator would never stop in ω =0 !
It would just ripple about ω =0 ..

• Reducing ∆t in ODE integrator may reduce the ripple,
But what if low J ? Divergence!

• Regularization methods? A) Numerical stiffness!
B) Approximation! C) The brake would never stick! …

• Also, if ever ω =0, which Mf ? Not computable!

ω

Mf

t

ω

J

Mf
Me

20

Differential Inclusions: motivation
• Most differential problems can be posed as equalities like:

dx/dt = f (x,t)  ODE, DAE , ok

• But some problems require inequalities or inclusions like

dx/dt ∈ f (x,t)  Differential Inclusion! (DI)

• Example: a flywheel with brake torque and applied torque (simple?!)

• Improved model!

• J dω/dt = Mf (ω) +Me(t) where Mf = -Mf max for ω >0
and Mf = Mf max for ω <0
and −Mf max< Mf < Mf max for ω =0

• This could handle also ω =0 case, ex. brake sticking

• But now we have a differential inclusion dω/dt ∈ f (ω,t) . It requires special solvers.

J

Mf
Me

ω

Mf

A set-valued
MULTIFUNCTION!

21

Measure Differential Inclusions

• What if the velocity must have discontinuities?

• ..because of impulses,
• ..because of impacts,
• ..because of friction effects such as in Painlevé paradox

• The RHS has ‘peaks’ (impulses) measure distributions
The velocity has ‘jumps’  function of bounded variation

• Measure Differential Inclusion (MDI): strong definition [Moreau]

dv/dt ∈ f (v,t)

For singular decomposition of Borel measure

22

Our DVI model

• Mechanical system with

• Set of bilateral joints

• Set of point contacts

• External forces

Bilateral constraint
equations

Contact forces VIs

23

Our DVI model

• Do DVI time-step
discretization, as a
Measure Differential Inclusion
MDI

• It leads to a Nonlinear
Complementarity Problem
(NCP), also a Variational
Inequality (VI)

•Solve VI at each time step for
•unknown speeds
•unknown reaction impulses

Speeds

Forces

Bilateral constraint
equations

Contact constraint
equations

Coulomb 3D friction
model

Stabilization
terms

COMPLEMENTARITY!

Reaction
impulses

24

Cone complementarity

• A modification (relaxation, to get a convex problem):

For small h and/or small speeds and/or small friction,
almost no differences from the Coulomb theory.
Also, convergence proved as in the original scheme.

[see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics”]
25

Cone complementarity

• Aiming at a more compact formulation:

• We also introduce the convex cone

• ..and its polar cone:

is i-th friction cone is R 26

Cone complementarity

• We introduce the Delassus operator N

• Finally we formulate everything as a Cone Complementarity Problem (CCP):

becomes..

CONE COMPLEMENTARITY
PROBLEM

27

DVI Elasto-Plastic contact

• DVI formulation can be extended to more general friction/contact laws

28

DVI Elasto-Plastic contact

• DVI formulation can be extended to more general friction/contact laws

29

DVI advanced contact laws

Rigid contact
(default):

Rigid contact:

Compliant contact:

Nonlinear, with cohesion: Rigid, with plastic cohesion

Es:
- Lennard-Jones
- Johnson-Kendall-Roberts
- ...

30

DVI advanced contact laws

• In general, DVI are useful for various reasons that are diffult to handle in DAE:

• very stiff or rigid contacts  set valued force laws  VI

• plasticity in contacts  yield surfaces  VI

• friction  set valued force laws  VI

Rigid contact:

Compliant, plastic cohesion Compliant, plastic cohesion and compression

31

CCP solvers in Chrono

In the DVI-MDI time-stepper, a VI (or CCP) must be solved at each time step.
Which methods are available to solve a CCP in Chrono ?

• Fixed-point solvers:
• Projected-SOR
• Projected-GaussSeidell
• Projected-Symmetric-SOR

• Krylov spectral methods
• Barzilai-Borwein
• Nesterov Accelerated Projected Gradient Descent (APGD)

32

P-SOR solver for CCP

• Fixed point iteration with projection on cones:

At each r-th iteration:

Loop on all i-th
constraints

With K= N

If i-th is a contact constraint: If i-th is a scalar bilateral constraint

= ==

= == =

Jacobian for body A Jacobian for body B

Jacobian for body A Jacobian for body B

33

P-SOR solver for CCP

•The projection operator must be non-extensive,
i.e. lipschitzian with ||f(a)-f(b)|| ≤ ||a – b||

• For each frictional contact constraint:

•For each bilateral constraint, simply do nothing.

•The complete operator:

34

P-SOR solver for CCP

• P-SOR in incremental efficient form

Avoid these loops, otherwise
each iteration would be O(n2)
Only one of these multiplier
changes at each iteration…

We know that: ..so we
rewrite:

Loop on all i-th
constraints 35

P-SOR solver for CCP

• Pseudocode

36

• Very robust algorithm
• It supports redundant constraints
• It is very fast – good for robotics, etc.
• ...but it has slow convergence:

• Other methods, without the convergence stall, are needed when high precision is needed

P-SOR solver for CCP

37

• Use SetSolverType() to change the solver:

P-SOR solver for CCP

// change the solver to P-SOR:
my_system.SetSolverType(ChSystem::SOLVER_SOR);

// use high iteration number if constraints tend to ‘dismount’ or contacts interpenetrate:
my_system.SetMaxItersSolverSpeed(90);

38

• In case of convexified problem (i.e. ‘associative flows’ as our CCP) one can express the VI
as a constrained quadratic program:

• One can use the Spectral Projected Gradient (SPG) method for solving it!
• It is a modified Barzilai-Borwein iteration

P-SPG-FB solver for CCP

39

• Our modified P-SPG-FB algorithm

• Supports premature termination with
fall-back strategy (FB)

• Uses alternating step sizes

• Uses diagonal preconditioning (with
isothropic cone scaling)

• Performs projection onto Lorentz cones

P-SPG-FB solver for CCP

40

• Comparison with other Krylov solvers for simple linear case
• (only bilateral constraints):

P-SPG-FB solver for CCP

41

• Comparison with other solvers for complemetarity problems
• (only unilateral contacts, no friction)

P-SPG-FB solver for CCP

42

• Comparison with other solvers for complemetarity problems
• (unilateral contacts AND friction - few solvers can handle it)

P-SPG-FB solver for CCP

43

• Effect of preconditioning:

P-SPG-FB solver for CCP

44

• Use SetSolverType() to change the solver:

P-SPG-FB solver for CCP

// change the solver to Barzilai-Borwein P-SPG-FB:
my_system.SetSolverType(ChSystem::SOLVER_BARZILAIBORWEIN);

// will terminate iterations when this tolerance is reached:
my_system.SetTolForce(1e-7);

// use high iteration number if constraints tend to ‘dismount’ or contacts interpenetrate:
my_system.SetMaxItersSolverSpeed(110);

45

• Draws on the Nesterov’s Accelerated Projected Gradient Descend
• It operates as a non-linear optimization for:

• Properties of convergence are very similar to P-SPG-FB just presented.

APGD solver for CCP

46

• Use SetSolverType() to change the solver:

APGD solver for CCP

// change the solver to Nesterov’ APGD:
my_system.SetSolverType(ChSystem::SOLVER_APGD);

// will terminate iterations when this tolerance is reached:
my_system.SetTolForce(1e-7);

// use high iteration number if constraints tend to ‘dismount’ or contacts interpenetrate:
my_system.SetMaxItersSolverSpeed(110);

47

* For FEA, the solver must support stiffness and damping matrices. Note that FEA in NSC is not yet possible at the moment.

1 The MINRES solver might converge too slow when using finite elements with ill-conditioned stiffness

2 The SOR solver is not precise enough for good HHT convergence, except for simple systems

Time-integration & solvers cheat-sheet

LI
N

EA
R

SY
ST

EM
(D

AE
)

CC
P

(D
VI

)

Ite
ra

tiv
e

Re
du

nd
an

t
co

ns
tr

ai
nt

s

O
pt

io
na

lC
hr

on
o

m
od

ul
e

La
rg

e
sy

st
em

s

Time integrator compatibility

HHT EULER_IMPLICI
T_LINEARIZED

FE
A*

FE
A*

SOR * ●● * ●● ●●●
1
2 ●●●

DAE, DVI

BARZILAIBORWEIN * ●●● * ●● ●●● ●
DAE

●●●
DAE, DVI

APGD * ●●● * ●● ●●● ●
DAE

●●●
DAE, DVI

MINRES ●1 * ●●● ●●● ●●
DAE

●
DAE

MKL ●●● * ●● ●●●
DAE

●
DAE

MUMPS ●●● * ● ●● ●●●
DAE

●
DAE

48

	Time integration
	Time Integration in Chrono
	Time Integration – Smooth Dynamics
	Time Integration – Non-smooth Dynamics
	Smooth dynamics - DAE
	Differential problems
	DAE Explicit Integrators
	DAE Implicit Integrators
	DAE Implicit Integrators in Chrono
	The HHT integrator
	The HHT integrator
	Configuring the Integrator in Chrono
	Linear System Solvers
	Linear System Solvers: MINRES
	Linear System Solvers: MKL
	Linear System Solvers: MUMPS
	Non-Smooth dynamics - NSC
	Variational Inequalities
	Differential Variational Inequality
	Differential Inclusions: motivation
	Differential Inclusions: motivation
	Measure Differential Inclusions
	Our DVI model
	Our DVI model
	Cone complementarity
	Cone complementarity
	Cone complementarity
	DVI Elasto-Plastic contact
	DVI Elasto-Plastic contact
	DVI advanced contact laws
	DVI advanced contact laws
	CCP solvers in Chrono
	P-SOR solver for CCP
	P-SOR solver for CCP
	P-SOR solver for CCP
	P-SOR solver for CCP
	P-SOR solver for CCP
	P-SOR solver for CCP
	P-SPG-FB solver for CCP
	P-SPG-FB solver for CCP
	P-SPG-FB solver for CCP
	P-SPG-FB solver for CCP
	P-SPG-FB solver for CCP
	P-SPG-FB solver for CCP
	P-SPG-FB solver for CCP
	APGD solver for CCP
	APGD solver for CCP
	Time-integration & solvers cheat-sheet

