
Collision detection in Chrono

Collision shapes

2

Collision shapes

• Collision shapes are defined respect to the REF frame of the body
• Spheres, boxes, cylinders, convex hulls, ellipsoids, compounds,…
• Concave shapes: decompose in compounds of convex shapes
• For simple ready-to-use bodies with predefined

collision shapes, can use:
• ChBodyEasySphere,
• ChBodyEasyBox,
• etc.

3

Specifying collision shapes

• Typical steps to setup collision:
body_b->GetCollisionModel()->ClearModel();

body_b->GetCollisionModel()->AddSphere(myradius);

...

body_b->GetCollisionModel()->BuildModel();

body_b->SetCollide(true);

• Collision ‘families’ for selective collisions:
// Change from default collision family (0)

body_b->GetCollisionModel()->SetFamily(2);

body_b->SetFamilyMaskNoCollisionWithFamily(4);

4

Collision tolerances

• Set these tolerances before creating collision shapes:

ChCollisionModel::SetDefaultSuggestedEnvelope(0.001);
ChCollisionModel::SetDefaultSuggestedMargin (0.0005);
ChCollisionSystemBullet::SetContactBreakingThreshold(0.001);

• Envelope (outward)
• Represents the search volume for potential collision
• Allows numerical schemes to anticipate collisions ahead of time
• With zero envelope, the solver may first ‘see’ a collision with bodies already interpenetrated →

inaccurate and shaky simulation

• Margin (inward)
• Defines a range of penetrations within which faster collision detection algorithms can be safely used

• Contact breaking threshold
• Distance beyond which contact between two shapes previously in contact is discarded
• Bullet-specific setting (related to contact persistence in Bullet)

5

Envelope

Margin
SHAPE

Recommendations

• Collision shapes and visualization assets do not need to match.
• one may have a detailed visualization shape for rendering purposes, yet the collision shape is much

simpler to avoid a slowdown of the simulation.

• Avoid shapes that are too thin, too flat, or in general that lead to extreme size ratios
• Use collision families to control what shapes interact through contact

• Collision tolerances:
• Too large collision envelope: too many potential contacts, high CPU time, high waste of RAM
• Too small collision envelope: risk of tunnelling effects, unstable simulation of stacked objects

• Too large collision margin: shapes are ‘rounded’ too much
• Too small collision margin: when interpenetration occurs beyond this value, an inefficient algorithm is

used

6

Collision detection primer

7

Collision detection basics

• Collision detection implies:
• Deciding what to test
• Performing collision tests

• Determining whether a collision occurred
• Determining when a collision occurred
• Determining where a collision occurred

• Processing results
• “Collision handling”

• A naïve approach is O(n2)
• Check for collisions between objects by comparing all possible combinations

8

Two-phase collision detection

1. Broad-phase
• Find pairs to compare
• Use bounding volumes (AABB, OBB, spheres)
• Goals:

• efficiently determine pairs of objects that cannot collide
• accuracy is not a major concern

2. Narrow-phase
• Compare individual pairs
• Use exact shape geometry
• Goals:
• efficiently and accurately determine pairs of objects that do collide
• completely characterize existing collisions (from a geometric point of view)

9

Broad-phase algorithms

• Dynamic AABB trees
• well optimized, general-purpose broad-phase algorithm
• structure adapts dynamically to the size of the scene and its contents
• fast object addition/deletion
• handles well scenes with many objects in motion

• Sweep and Prune (SAP)
• good general-purpose broad-phase algorithm
• best performance for dynamic world where most objects have little or no motion
• limitation: requires scene of fixed size, known beforehand

• Hierarchical grids
• Good general-purpose broad-phase algorithm, based on binning
• Relatively easy to parallelize
• limitation: with few levels, performance decreases when object size varies very much

• Several other…
10

Narrow-phase algorithms

• Analytical methods for simple primitive shapes
• Example: sphere-sphere collision

𝛿𝛿 = 𝐶𝐶1𝐶𝐶2 − 𝑅𝑅1 + 𝑅𝑅2
𝑛𝑛 = �𝐶𝐶1𝐶𝐶2 𝐶𝐶1𝐶𝐶2
…

• Can be defined for several primitive shape pairs (sphere-box, box-box, sphere-capsule, etc.)
• Most efficient and accurate

• Separating Axis Theorem (SAT)
• Test intersection of object projections on a set of different axes

11

R1

C1

R2

C2

r1

r2

Narrow-phase algorithms

• Gilbert-Johnson-Keerthi (GJK) algorithm
• Solves proximity queries for arbitrary convex objects (as long as they can be described in terms of a

support mapping function)

• Iterative process applied to the Minkovski difference of two polyhedra
(A and B intersect ⇔ A-B contains the origin)

12

d

𝑃𝑃 = 𝑆𝑆𝑐𝑐 𝐝𝐝 𝑃𝑃 = 𝑆𝑆𝑐𝑐 𝐝𝐝

Narrow-phase algorithms

• Minkovski Portal Refinement (MPR)
• Developed by Gary Snethen in 2006
• Like GJK, relies on convex shapes that can be

defined in terms of a support mapping function
• Unlike GJK, does not provide the shortest distance

between separated shapes
• Simpler implementation and more numerically

robust than GJK

13

http://xenocollide.snethen.com/

http://xenocollide.snethen.com/

Collision detection algorithms in Chrono

• Chrono::Engine
• Relies on Bullet (http://bulletphysics.org) for collision detection
• Broad-phase: dynamic AABB trees
• Narrow-phase: GJK

• Chrono::Parallel
• Custom collision detection
• Broad-phase: uniform binning (experimental 2-level grids)
• Narrow-phase: hybrid (analytical/SAT – MPR)
• Option for Bullet collision detection

14

http://bulletphysics.org/

Contact material properties

15

Specifying contact method at system construction (1/3)
• The contact method is implicitly specified by the type of physical system constructed
• The class ChSystemNSC uses the complementarity approach to treat contacts (if any)

• The class ChSystemSMC employs the penalty approach to treat contacts

16

class ChApi ChSystemNSC : public ChSystem {
/// Create a physical system.
/// Note, in case you will use collision detection, the values of
/// 'max_objects' and 'scene_size' can be used to initialize the broadphase
/// collision algorithm in an optimal way. Scene size should be approximately
/// the radius of the expected area where colliding objects will move.
/// Note that currently, by default, the collision broadphase is a btDbvtBroadphase
/// that does not make use of max_objects and scene_size, but one might plug-in
/// other collision engines that might use those parameters.
/// If init_sys is false it does not initialize the collision system or solver
/// assumes that the user will do so.
ChSystemNSC(unsigned int max_objects = 16000, double scene_size = 500, bool init_sys = true);

class ChApi ChSystemSMC : public ChSystem {
/// Constructor for ChSystemDEM.
/// Note that, in case you will use collision detection, the values of
/// 'max_objects' and 'scene_size' can be used to initialize the broadphase
/// collision algorithm in an optimal way. Scene size should be approximately
/// the radius of the expected area where colliding objects will move.
ChSystemSMC(bool use_material_properties = true, ///< use physical contact material properties

unsigned int max_objects = 16000, ///< maximum number of contactable objects
double scene_size = 500 ///< approximate bounding radius of the scene
);

Specifying contact method at system construction (2/3)
• Bodies must be constructed to be consistent with the containing system:

• ChBody getter and setter methods for contact material:

17

ChBody(ChMaterialSurface::ContactMethod contact_method = ChMaterialSurface::NSC);

// Defined in ChMaterialSurfaceBase.h
enum ContactMethod {

NSC, ///< constraint-based (a.k.a. rigid-body) contact
SMC ///< penalty-based (a.k.a. soft-body) contact

};

/// Access the NSC material surface properties associated with this body.
/// This function performs a dynamic cast (and returns an empty pointer
/// if matsurface is in fact of SMC type). As such, it must return a copy
/// of the shared pointer and is therefore NOT thread safe.
std::shared_ptr<ChMaterialSurfaceNSC> GetMaterialSurfaceNSC() {

return std::dynamic_pointer_cast<ChMaterialSurfaceNSC>(matsurface);
}

/// Access the SMC material surface properties associated with this body.
/// This function performs a dynamic cast (and returns an empty pointer
/// if matsurface is in fact of NSC type). As such, it must return a copy
/// of the shared pointer and is therefore NOT thread safe.
std::shared_ptr<ChMaterialSurfaceSMC> GetMaterialSurfaceSMC() {

return std::dynamic_pointer_cast<ChMaterialSurfaceSMC>(matsurface);
}

/// Set the material surface properties by passing a ChMaterialSurfaceNSC or
/// ChMaterialSurfaceSMC object.
void SetMaterialSurface(const std::shared_ptr<ChMaterialSurface>& mnewsurf) { matsurface = mnewsurf; }

Specifying contact method at system construction (3/3)
• ChSystem virtual method for constructing a body with consistent contact material:

• ChSystemNSC

• ChSystemDEM

• Example: construct a system with specified contact method and create a body with consistent contact
material

18

/// Create and return the pointer to a new body.
/// The returned body is created with a contact model consistent with the type
/// of this Chsystem and with the collision system currently associated with this
/// ChSystem. Note that the body is *not* attached to this system.
virtual ChBody* NewBody() { return new ChBody(ChMaterialSurface::NSC); }

ChSystem* system;

switch (contact_method) {
case ChMaterialSurface::NSC:

system = new ChSystemNSC();
break;

case ChMaterialSurface::SMC:
system = new ChSystemSMC(use_mat_properties);
break;

}

auto object = std::shared_ptr<ChBody>(system->NewBody());
system->AddBody(object);

/// Create and return the pointer to a new body.
/// The returned body is created with a contact model consistent with the type
/// of this Chsystem and with the collision system currently associated with this
/// ChSystem. Note that the body is *not* attached to this system.
virtual ChBody* NewBody() { return new ChBody(ChMaterialSurface::SMC); }

ChMaterialSurfaceNSC and ChMaterialSurfaceSMC

19

/// Material surface data for SMC contact
class ChApi ChMaterialSurfaceSMC : public ChMaterialSurface
{
public:

float young_modulus; ///< Young's modulus (elastic modulus)
float poisson_ratio; ///< Poisson ratio
float static_friction; ///< Static coefficient of friction
float sliding_friction; ///< Kinetic coefficient of friction
float restitution; ///< Coefficient of restitution
float constant_adhesion; ///< Constant adhesion force
float adhesionMultDMT; ///< Adhesion multiplier used in DMT model.

float kn; ///< user-specified normal stiffness coefficient
float kt; ///< user-specified tangential stiffness coefficient
float gn; ///< user-specified normal damping coefficient
float gt; ///< user-specified tangential damping coefficient

/// Material surface data for NSC contact
class ChApi ChMaterialSurfaceNSC : public ChMaterialSurface
{
public:

float static_friction;
float sliding_friction;
float rolling_friction;
float spinning_friction;
float restitution;
float cohesion;
float dampingf;
float compliance;
float complianceT;
float complianceRoll;
float complianceSpin;

Complementarity Penalty

Specifying collision material (1/2)

• Easy but potentially memory-inefficient:
body_b->SetFriction(0.4f);
body_b->SetRollingFriction(0.001f);

• Using a shared material:
// Create a surface material and change properties:
auto mat = std::make_shared<ChMaterialSurfaceNSC>();
mat->SetFriction(0.4f);
mat->SetRollingFriction(0.001f);
// Assign surface material to body/bodies:
body_b->SetSurfaceMaterial(mat);
body_c->SetSurfaceMaterial(mat);
body_d->SetSurfaceMaterial(mat);
. . .

• Note: ChMaterialSurfaceSMC can only be set through a shared pointer

20

Specifying collision material (2/2)

21

auto object = std::shared_ptr<ChBody>(system->NewBody());
system->AddBody(object);

object->SetIdentifier(objectId);
object->SetMass(mass);
object->SetInertiaXX(400.0 * ChVector<>(1, 1, 1));
object->SetPos(pos);
object->SetRot(rot);
object->SetPos_dt(init_vel);
object->SetWvel_par(init_omg);
object->SetCollide(true);
object->SetBodyFixed(false);

switch (object->GetContactMethod()) {
case ChMaterialSurface::NSC:

object->GetMaterialSurfaceNSC()->SetFriction(object_friction);
object->GetMaterialSurfaceNSC()->SetRestitution(object_restitution);
break;

case ChMaterialSurface::SMC:
object->GetMaterialSurfaceSMC()->SetFriction(object_friction);
object->GetMaterialSurfaceSMC()->SetRestitution(object_restitution);
object->GetMaterialSurfaceSMC()->SetYoungModulus(object_young_modulus);
object->GetMaterialSurfaceSMC()->SetPoissonRatio(object_poisson_ratio);
object->GetMaterialSurfaceSMC()->SetKn(object_kn);
object->GetMaterialSurfaceSMC()->SetGn(object_gn);
object->GetMaterialSurfaceSMC()->SetKt(object_kt);
object->GetMaterialSurfaceSMC()->SetGt(object_gt);
break;

}

	Collision detection in Chrono
	Collision shapes
	Collision shapes
	Specifying collision shapes
	Collision tolerances
	Recommendations
	Collision detection primer
	Collision detection basics
	Two-phase collision detection
	Broad-phase algorithms
	Narrow-phase algorithms
	Narrow-phase algorithms
	Narrow-phase algorithms
	Collision detection algorithms in Chrono
	Contact material properties
	Specifying contact method at system construction (1/3)
	Specifying contact method at system construction (2/3)
	Specifying contact method at system construction (3/3)
	ChMaterialSurfaceNSC and ChMaterialSurfaceSMC
	Specifying collision material (1/2)
	Specifying collision material (2/2)

