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Things Covered

e Friction and contact, understanding the problem at hand
* The penalty approach

e The complementarity approach
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Mass X Acceleration = Force
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Mass X Acceleration = Force

e Coulomb friction coefficient - u

mv=W+F+F;+N

| |F]‘ | | § ﬂJ| |N‘ | Reflect on this: friction force can assume a bunch of values
(as long as they’re smaller than u X N though)
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Additive Manufacturing (3D SLS Printing)

Courtesy of Professor Tim Osswald, Polymer Engineering Center, UW-Madison
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Two main approaches: penalty & complementarity

_ Problem Computatlc.mal ma!ﬁy-body dynamics
i-th contact Handling frictional contact

! '

Penalty-based Complementarity
approach approach

Modelling approach

Optimization
techniques

Numerical techniques Collision detection




General Comments, Penalty Approach

* Approach commonly used in handling granular material
* C(Called “Discrete Element Method”

* The “Penalty” approach works well for sphere-to-sphere and sphere-to-plane scenarios
e Deformable body mechanics used to characterize what happens under these scenarios
e Standard reference: K. L. Johnson, Contact Mechanics, University Press, Cambridge, 1987.

 Methodology subsequently grafted to general dynamics problem of rigid bodies — arbitrary geometry

 When they collide, a fictitious spring-damper element is placed between the two bodies
* Sometimes spring & damping coefficient based on continuum theory mentioned above
e Sometimes values are guessed (calibration) based on experimental data
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The Penalty Method, Taxonomy

 Depending on the normal relative velocity between bodies that experience a collision and their
material properties, if there is no relative angular velocity, the collision is
* Elastic, if the contact induced deformation is reversible and independent of displacement rate

e Viscoelastic, if the contact induced deformation is irreversible, but the deformation is dependent on the
displacement rate

* Plastic, if collision leaves an involved body permanently deformed but the deformation of body is
independent of the displacement rate

e Viscoplastic, if impact is irreversible and similar to the viscoelastic contact but deformation depends on the
displacement rate

e According to the dependency of the normal force on the overlap and the displacement rate, the
force schemes can be subdivided into

e Continuous potential models (like Lennard-Jones, for instance)

* Linear viscoelastic models (simple, used extensively, what we use here)

* Non-linear viscoelastic models

e Hysteretic models (see papers of L. Vu-Quoc, in “DEM Further Reading” slide)

S
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The Penalty Method in Chrono, Nuts and Bolts

* Method relies on a record (history) of tangential displacement §; to model static friction (see figure at right)

10
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The Penalty Method in Chrono, Nuts and Bolts

F, F,
Visualize this 6;
— as creep.
6}?
On On /
F, = f Deff (kn5nn - Vnmeffvn) F; = f Deff (_ktat - Vtmeffvt)

If |F¢| > u|F,| thenscale |8;] sothat |F;| = ulF,]|
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Direct Shear Analysis via Granular Dynamics
[using LAMMPS/LIGGGHTS and Chrono]

e 1800 uniform spheres randomly packed
* Particle Diameter: D=5 mm
e Shear Speed: 1 mm/s

* Inter-Particle Coulomb Friction Coefficient: u=0.5
(Quartz on Quartz)

* Void Ratio (dense packing): e = 0.4

12

[J. Fleischmann]—
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Direct Shear Analysis via Granular Dynamics
[using LAMMPS/LIGGGHTS and Chrono]

DEM contact model in Chrono Parallel
25

—_|GGGHTS: True History

=—=Chrono: True History

e 1800 uniform spheres randomly packed ——Chrono: Pseudo-History

=—=Chrono: No History
LIGGGHTS: No History

¢ Particle Diameter: D =5 mm

e Shear Speed: 1 mm/s 1.5

* Inter-Particle Coulomb Friction Coefficient: u=0.5
(Quartz on Quartz)

« Void Ratio (dense packing): e = 0.4 Chrono Serial, no history

Shear Stress / Normal Stress

Chrono Parallel, no history

05
0
0 0.2 04 06 0.8 1 1.2 1.4 1.6 1.8 2

Shear Displacement / Sphere Diameter
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Wave propagation in ordered granular material

14

[Arman]—
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[Antonio Recuero]—
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Penalty Method — the Pros

* Backed by large body of literature and numerous validation studies

* Noincrease in the size of the problem
e This is unlike the “complementarity” approach, discussed next

* Can accommodate shock wave propagation
e Can’t do w/ “complementarity” approach since it’s a pure “rigid body” solution

e Easy to implement
e Entire numerical solution decoupled
e Easy to scale up to large problems
* Parallel-computing friendly — run in parallel on per contact basis

* Memory communication intensive
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Penalty Method — Cons

1. Numerical stability requires small integration time steps
e Long simulation times

2. Choice of integration time step strongly influences results
3. Sensitive wrt information provided by the collision detection engine

4. There is some hand-waving when it comes to arbitrary shapes and the fact that the
friction force is a multi-valued function
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DEM, Further Reading

[1] D. Ertas, G. Grest, T. Halsey, D. Levine and L. Silbert, Gravity-driven dense granular flows, EPL (Europhysics Letters), 56 (2001), pp. 214-220.

[2] H. Kruggel-Emden, E. Simsek, S. Rickelt, S. Wirtz and V. Scherer, Review and extension of normal force models for the Discrete Element Method, Powder
Technology, 171 (2007), pp. 157-173.

[3] H. Kruggel-Emden, S. Wirtz and V. Scherer, A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic
or plastic behavior, Chemical Engineering Science (2007).

[4] D. C. Rapaport, Radial and axial segregation of granular matter in a rotating cylinder: A simulation study, Physical Review E, 75 (2007), pp. 031301.

[5] L. Silbert, D. Ertas, G. Grest, T. Halsey, D. Levine and S. Plimpton, Granular flow down an inclined plane: Bagnold scaling and rheology, Physical Review E, 64
(2001), pp. 51302.

[6] L. Vu-Quoc, L. Lesburg and X. Zhang, An accurate tangential force—displacement model for granular-flow simulations: Contacting spheres with plastic
deformation, force-driven formulation, Journal of Computational Physics, 196 (2004), pp. 298-326.

[7] L. Vu-Quoc, X. Zhang and L. Lesburg, A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven
formulation, Journal of Applied Mechanics, 67 (2000), pp. 363.
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Two Shapes, and the Distance [Gap Function]

e Notation: 0A represents set of points making up the boundary of body A
e Shape body A: collection of points S with r§ =r4 + A485, §5 €04

e Shape body B: collection of points S with r% =rp + Agsy , sp € OB

 Signed distance function in a given configuration q, and q;

D) ap®) = min [ -l
S €0A, s3€0B

e Contact when distance function is zero

®(qa(t*),qp(t*)) =0

20
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Body A — Body B Contact Scenario

21
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Defining the Normal and Tangential Forces

e When a contact occurs: point of contact and local reference frame identified. Latter defined as follows:
— u; and w; are two mutually perpendicular unit vectors in the tangent plan at the contact point

— Unit vector n; defines the normal direction in the local reference frame

e A normal force appears along the direction normal to the plane of contact
— Magnitude of the force is 7; 5. Specifically,

Fin =7inn;

e A friction force appears in the tangent plane
— Has two components along the axes u; and w;: 7;,, and 7; ., respectively. Specifically,

Fir =%iui +YiwWi

e NOTE: The point of contact, n;, u;, and w; are obtained at the end of the collision detection task, which is
executed at the beginning of each time step

22



S,
£ PROJECT
Z,CHRONO

DVI-Based Methods: The Contact Model

e A contact is modeled by one inequality constraints, which states that either the distance between two bodies is
greater than zero ®;(q) > 0, in which case the normal force is zero 4;,, = 0 , or vice-versa, i.e., if the distance
is zero, the contact force is nonzero.

— Condition above captured in the following complementarity condition:
Yin >0, ®i(q) >0, @i(q)yin =0,
— Another way to state the complementarity condition:

0<%n L1 @i(q) >0

23
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DVI-Based Methods: The Friction Model

e The friction model considered is Coulomb’s:

u"bf}/@n — \/f}/?,u+fyzw

F;?:T-v,,;,T = —||F;,

— First condition: friction force is within the friction cone

— Second condition: friction force and tangential velocity between two bodies at point of contact are collinear
and of opposite direction

— The third condition captures the stick-slip condition. If the velocity is greater than zero, it means that the

friction force saturated; i.e., puvin = \/ 3?22” + ﬁf,w, this is the sliding scenario. Conversely, if the bodies

stick to each other, then the relative tangential velocity is zero, v;r = 03, and the friction force is not

saturated p;7;n > \/’)’2 w T ’)’@ w*

24
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Coulomb’s Model Posed as the Solution of an Optimization Problem

e Assume that 7; , and v; 7 are given and you pose the following optimization problem in variables  and y:

— Minimize the function v'{T (zu; + yw;) subject to the constraint \/x? + y? < piJin

e If you pose the first order Karush-Kuhn-Tucker optimality conditions for this optimization problem you end up
precisely with the set of three conditions that define the Coulomb friction model

o It follows that there is an interplay between ¥; n, Vi, Yiw, and v; 7. Using math notation

(Yius Yiqw) = argmin VE:T (zu; +yw;) .

V $2+y2 Sﬂ'i:ﬁ',n

25
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The DVI Problem: The EOM, in Fine-Granularity Form

e Time evolution of the dynamical system is the solution of the following DVI problem:

AT
B=1,....,nb : mp¥p= >, [@E’ﬁ] Yiv + It a,v)+ D0 (Vim0 + Vi Wi + Vi W)
icB(B) icA(B)

B=1,...,nb : Jpop= Y O3, +7t,q,v)+ 3 8 AL Finni +iuW +Jiw w;)
icB(B) icA(B)

B=1,...,nb : pB:%GT(pB)(DB
ieB : Wq,t)=0
ieA : 0<7;, L ®;(q) >0,

JR— 3 —_—

i€ A (Biw,Niw)= argmin vl (2D;, +yDjy)
\ $2+y2 S#i'?i?n

26
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Frictional Contact: The Matrix-Vector Form

e Problem on previous slide reformulated using matrix-vector notation, assumes form

q = L(q)v

1€eB icA

1eB \Ifz-(q?t):()
ic A : 0<%, L ®i(q) >0,

(Vius Viw) = argmin v’ (zDjy + yDiw)
V $2+y2 gﬁi’z’:)?z',n

27
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The Discretization Process

e For straight index-3 DAE solution (like ADAMS), one uses the Newton-Euler form of the equations of motion
in conjunction with the level zero constraints (the position constraint equations)

e The DVI solution relies on the level one constraints (velocity level constraints)

e Implications:

— Since the level zero constraints are not enforced, there will be drift in the solution.

— Stabilization terms, that penalize the violation of the level zero constraints, are added to the level one
bilateral and unilateral constraints

— Bilateral and unilateral constraints massaged into the following (superscript (/) denotes the time step):
ieB : +T;(q0, 1) + VITvIFD 4 8 =
ieA : 0<yn L 3+®(qV)+ DI v >0.

*x Reminiscent of a Baumgarte stabilization scheme

28
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The Discretization Process

e The discretized form of the DVI problem:

M(V(E—H) - v(l)) = hf(t(l)aq(”a V(l)) + Z f}!'i,bvlpi + Zg‘@A (ﬂ/i;n Dz’,n + Yiu Dz’,u + Yi,w Dz‘,w)
1B

1eB %‘Ili(q(l),t) + VQJ?V(E+1) + % —0

i€A t 0< v, L 0i(qP) + DEHVU'H) >0

(Yius Viw) = argmin v’ (zDjy +yDjw)
MiYin = \ OSQ‘H'JQ
q(H'l) — q('!) + hL(q(I))v(I'f'l) .

e The first four of the equations above together combine for an optimization problem with equilibrium constraints

e Why an optimization problem?
— Because the way the Coulomb friction model is posed

e What type of optimization problem?
— This represents a nonlinear optimization problem

— Can be linearized if the friction cone is discretized and represented as a multifaceted pyramid (problem size increases & anisotropy creeps in)

e What are the ’equilibrium constraints’ ?
— Your typical optimization problem might display algebraic equality or inequality constraints

— Above, we are solving an optimization problem for which the constraints represent the discretization of a set of differential equations

29
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The NCP — CCP Metamorphosis

e Dealing with some generic nonlinear optimization problem like the one above is daunting

e Trick used to recast it as a simpler optimization problem for which

(i) We are guaranteed that a solution exists (ideally, it would be unique, in some sense), and
(ii) There are tailored algorithms that we can use to efficiently find the solution

e Trick (coming from the left field): introduce a relaxation of the complementarity constraints

Instead of working with this:
i€A:0< v, L 3+0(q¥)+ DL v+ >0

Work with this:

i€A:0<y, L 3®i(dY)+ DI vt -1 /vTD; )2 + (vI Dyw)? > 0

e Owing to this relaxation, the NCP problem becomes a cone complementarity problem (CCP)

30
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The Cone Complementarity Problem

e The relaxed problem we have to deal with now looks like this

M(V(H_l) o V(l)) = hf(t(l)a q(l)a V(l)) + Z %,bvkpi + Zie/—l (P}/i,n Di,n + Yiu Di}u + Yi,w D’i;w)
ieB

i€B : tW(qW, )+ velvirh L 9% — g

ieA  0<vnl %@(q(g)) + Dg:nV(EH)—Mz' \/(VT Diu)?+ (vI Diw)? 20

(7i,u: '71',10) — argmin VT ($ Di,u + ) Di,w)
V $2+y2§ﬂ'i'}/é,n
q*t) = q® 4 rL(qW)vUtD.

31
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Cone Complementarity Problem (CCP)

e After some algebraic massaging, the equations on the previous slide combine to lead to the following CCP:

— Introduce the convex hypercone...

_ , FC' is the i-th friction cone
T = d FC'|® ® BC where _
icA(q®) i€B(qW) BC' isR

— ... and its polar hypercone

T° = o FCP | o BCw
icA(q®) i€B(q®)

— The CCP that needs to be solved at each time step is as follows:
*x Find the Lagrange hyper-multiplier v that satisfies:

T L —(Ny+r)eT°

x The matrix N and vector r are given, computed based on state information at time-step ¢t

32
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The Optimization Angle

e CCP represents first order optimality condition (KKT conditions) for a quadratic problem with conic constraints

1
min =y N~ + rl~y
v 2

subject to v; € T; forte=1,2,..., N, .

— N € R3Nex3Ne jg symmetric and positive semi-definite
— N and r € R3¢ do not depend on 7. They are computed once at the beginning of each time step
— The problem is convex, therefore it has a global solution

— Problem does not have a unique solution (since N is not positive-definite)

33
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Wrapping it Up, Complementarity Approach

e Everything straightforward once frictional contact forces are available

— The velocity v+ is computed via a matrix-vector multiplication

— Once velocity available, generalized positions q*1) computed as

gD = g 4 AL(qD)v D

34
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Complementarity Approach: Putting Things in Perspective

e Perform collision detection
 Formulate equations of motion; i.e., pose DVI problem
e DVI discretized to lead to nonlinear complementarity problem (NCP)

e Relax NCP to get CCP
e Equivalently, solve QP with conic constraints to compute y

* Once friction and contact forces available, velocity available

e Once velocity available, positions are available (numerical integration)
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Additive Manufacturing (3D SLS Printing)

Courtesy of Professor Tim Osswald, Polymer Engineering Center, UW-Madison

36
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Selective Laser Sintering (SLS) Layering

Granular Material

N 1186 185

/ 930 [kg/m?

r(mean) 0.029 [mm)|

r(o) 0.0075 [mm)
Simulation

Simulation Length: 20 [s]
At 5x 107° [s]
Run Time 49 Hours >

[Hammad]— 38
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Dress 3D Printing Problem




Using Simulation in 3D Printing of Clothes
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Pros and Cons, Complementarity Approach

* Pros
» Allows for large integration step sizes since it doesn’t have to deal with contact stiffness
e Reduced number of model parameters one can fiddle with
e |t looks at the entire problem, it doesn’t artificially decouples the problem

* Cons
e Requires a global solution, which means that large systems lead to large coupled problems
e Our implementation has numerical artifacts owing to the relaxation of the non-penetration condition
e Challenging to model coefficient of restitution (currently uses an inelastic model)
e Stuck w/ a rigid body dynamics take on the problem (can’t propagate shock waves)
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Reference, DVI Literature

e Lab technical report:

e TR-2016-12: “Posing Multibody Dynamics with Friction and Contact as a Differential Algebraic Inclusion
Problem” D. Negrut, R. Serban: http://sbel.wisc.edu/documents/TR-2016-12.pdf

D. E. Stewart and J. C. Trinkle, An implicit time-stepping scheme for rigid-body dynamics with
inelastic collisions and Coulomb friction, International Journal for Numerical Methods in
Engineering, 39 (1996), pp. 2673-2691.

D. E. Stewart, Rigid-body dynamics with friction and impact, SIAM Review, 42 (2000), pp. 3-39

M. Anitescu and G. D. Hart, A constraint-stabilized time-stepping approach for rigid multibody
dynamics with joints, contact and friction, International Journal for Numerical Methods in
Engineering, 60 (2004), pp. 2335-2371.

M. Anitescu and A. Tasora, A matrix-free cone complementarity approach for solving large-scale,
nonsmooth, rigid body dynamics, Comput. Methods Appl. Mech. Engrg. 200 (2011) 439-453


http://sbel.wisc.edu/documents/TR-2016-12.pdf

sy,

Closing Remarks Fe @ @
[Applies both for Penalty and DVI approaches]

e There is some hand waving when it comes to handling friction and contact
e Bothin Penalty and DVI

e Handling frictional contact is equally art and science
e To get something to run robustly requires tweaking
e Takes some time to understand strong/weak points of each approach

* Continues to be area of active research
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General Comments, DVI

e Differential Variational Inequality (DVI): a set of differential equations that hold in
conjunction with a collection of constraints

e Classical equations of motion: Newton-Euler EOMs, govern time evolutions of constrained MBS

e Kinematic constraints coming from joints
e These constraints are called bilateral constraints

 When dealing with contacts, the non-penetration condition captured as a unilateral constraint
e At point of contact, relative to body 1, body 2 can move outwards, but not inwards

e The variational attribute stems from the optimization problem posing the Coulomb friction model
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Bilateral vs. Unilateral Constraints

e Nomenclature: classical MBD uses kinematic constraints, which we’ll call bilateral constraints. In DVI we also have
non-penetration constraints, which are unilateral constraints and assume the form of inequalities.

e Notation: We’ll call A the set of all active unilateral constraints present in the system. Think of these as active
contacts. They’ll be denoted by

— Note that the nonpenetration condition is expressed as (the distance between two bodies should also be positive)
(I)@(Q) > 0, 1€ A

e Notation: We’'ll call B the set of all bilateral constraints present in the system. These expression of these constraints
will be denoted by ¥(q,t). Just like before we have that

Ui(qt)=0, icB

e Remark: While the bilateral constraints typically don’t change in time (a spherical joint stays a spherical joint
throughout the simulation), the unilateral constraints appear and disappear; i.e., contacts are made and then broken.

In other words, A depends on the state q of the system
53
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