General Theoretical Concepts Related to Multibody Dynamics
Before Getting Started

• Material draws on two main sources


  • Course notes, available at: http://sbel.wisc.edu/Courses/ME751/2016/
Looking Ahead

• Purpose of this segment:
  • Quick discussion of several theoretical concepts that come up time and again when using Chrono

• Concepts covered
  • Reference frames and changes of reference frames
  • Elements of the kinematics of a 3D body (position, velocity and acceleration of a body)
  • Kinematic constraints (joints)
  • Formulating the equations of motion
    • Newton-Euler equations of motion (via D’Alembert’s Principle)
Reference Frames in 3D Kinematics. Problem Setup

• Global Reference Frame (G-RF) attached to ground at point O

• Imagine point P is fixed (red-pen mark) on the rigid body

• Rigid body has a reference frame attached (fixed) to it
  • Assume its origin is at O (same as G-RF)
  • Called Local Reference Frame (L-RF) – shown in blue
  • Axes: \( f, g, h \)

• Question of interest:
  • What is the relationship between the coordinates of point P in G-RF and L-RF?
More Formal Way of Posing the Question

- Let $\vec{q} = \overrightarrow{OP}$ be a geometric vector (see figure)

- In the G-RF defined by $(\vec{i}, \vec{j}, \vec{k})$, the geometric vector $\vec{q}$ is represented as

  $$\vec{q} = q_x \vec{i} + q_y \vec{j} + q_z \vec{k}$$

- In the L-RF defined by $(\vec{f}, \vec{g}, \vec{h})$, the geometric vector $\vec{q}$ is represented as

  $$\vec{q} = \bar{q}_x \vec{f} + \bar{q}_y \vec{g} + \bar{q}_z \vec{h}$$

- QUESTION: how are $(q_x, q_y, q_z)$ and $(\bar{q}_x, \bar{q}_y, \bar{q}_z)$ related?
Relationship Between L-RF Vectors and G-RF Vectors

\[
\vec{f} = a_{11} \vec{i} + a_{21} \vec{j} + a_{31} \vec{k}
\]

\[
\vec{g} = a_{12} \vec{i} + a_{22} \vec{j} + a_{32} \vec{k}
\]

\[
\vec{h} = a_{13} \vec{i} + a_{23} \vec{j} + a_{33} \vec{k}
\]

\[
f = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} \quad g = \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} \quad h = \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}
\]

\[
a_{11} = \vec{i} \cdot \vec{f} = \cos \theta(\vec{i}, \vec{f})
\]

\[
a_{12} = \vec{i} \cdot \vec{g} = \cos \theta(\vec{i}, \vec{g})
\]

\[
a_{13} = \vec{i} \cdot \vec{h} = \cos \theta(\vec{i}, \vec{h})
\]

\[
a_{21} = \vec{j} \cdot \vec{f} = \cos \theta(\vec{j}, \vec{f})
\]

\[
a_{22} = \vec{j} \cdot \vec{g} = \cos \theta(\vec{j}, \vec{g})
\]

\[
a_{23} = \vec{j} \cdot \vec{h} = \cos \theta(\vec{j}, \vec{h})
\]

\[
a_{31} = \vec{k} \cdot \vec{f} = \cos \theta(\vec{k}, \vec{f})
\]

\[
a_{32} = \vec{k} \cdot \vec{g} = \cos \theta(\vec{k}, \vec{g})
\]

\[
a_{33} = \vec{k} \cdot \vec{h} = \cos \theta(\vec{k}, \vec{h})
\]

There is a good reason the values \(a_{ij}\) above are called “direction cosines”.

6
Punch Line, Change of Reference Frame (from "source" to "destination")

\[
\begin{bmatrix}
q_x \\
q_y \\
q_z
\end{bmatrix}
= \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
\bar{q}_x \\
\bar{q}_y \\
\bar{q}_z
\end{bmatrix}
\]

\[q_d = A_{ds} q_s\]

\[A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
= \begin{bmatrix}
f \\
g \\
h
\end{bmatrix}\]

\[f = \begin{bmatrix}
a_{11} \\
a_{21} \\
a_{31}
\end{bmatrix}
\quad g = \begin{bmatrix}
a_{12} \\
a_{22} \\
a_{32}
\end{bmatrix}
\quad h = \begin{bmatrix}
a_{13} \\
a_{23} \\
a_{33}
\end{bmatrix}\]
The Bottom Line: Moving from RF to RF

- Representing the same geometric vector in two different RFs leads to the concept of “rotation matrix”, or “transformation matrix” $A_{ds}$:

  - Getting the new coordinates, that is, representation of the same geometric vector in the new RF is as simple as multiplying the coordinates by the rotation matrix $A_{ds}$:

    $$q = A_{ds} \tilde{q}$$

- NOTE 1: what is changed is the RF used to represent the vector
  - We are talking about the *same* geometric vector, represented in two RFs

- NOTE 2: rotation matrix $A_{ds}$ sometimes called “orientation matrix”
Rotation Matrix is Orthogonal

- Recall that \( \vec{f}, \vec{g}, \) and \( \vec{h} \) are mutually orthogonal
- Recall that \( \vec{f}, \vec{g}, \) and \( \vec{h} \) are unit vectors
- Therefore, the following holds:

\[
\begin{align*}
\vec{f}^T \vec{f} &= \vec{g}^T \vec{g} = \vec{h}^T \vec{h} = 1 \\
\vec{f}^T \vec{g} &= \vec{g}^T \vec{h} = \vec{h}^T \vec{f} = 0
\end{align*}
\]

- Consequently, the rotation matrix \( \mathbf{A} \) is orthogonal

\[
\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I}_{3 \times 3}
\]
Summarizing Key Points, Reference Frames

- Started with the representation $q_s$ of a geometric vector $\mathbf{q}$ in a “source” reference frame $s$

- The representation of the geometric vector $\mathbf{q}$ in a “destination” reference frame $d$ is given by

$$q_d = A_{ds}q_s$$

- Matrix $A_{ds}$ called transformation, or rotation matrix (taking vector from the source RF $s$ to the destination RF $d$)

- Because $A_{ds}$ is orthogonal, one has that

$$q_s = A_{ds}^T q_d \quad \text{therefore} \quad A_{sd} = A_{ds}^T$$

- Many times, the “destination” RF is the global reference frame (G-RF), which has ID “0”
  - In this case, we don’t show “0” anymore, simply call $A_s$ instead of $A_{0s}$
New Topic:
Angular Velocity. 3D Problem Setup

• Global Reference Frame (G-RF) attached to ground at point O

• Imagine point P is fixed (red-pen mark) on the rigid body

• Rigid body has a reference frame attached to it
  • Assume its origin is at O (same as G-RF)
  • Local Reference Frame (L-RF) – shown in blue
  • Axes: \( \mathbf{f}, \mathbf{g}, \mathbf{h} \)

• Question of interest:
  • How do we express rate of change of blue RF wrt global RF?
Angular Velocity, Getting There...

- Recall that \( \mathbf{A}_i \mathbf{A}_i^T = \mathbf{I}_{3 \times 3} \). Taking a time derivative yields
  \[
  \dot{\mathbf{A}}_i \mathbf{A}_i^T + \mathbf{A}_i \dot{\mathbf{A}}_i^T = 0_{3 \times 3} \quad \Rightarrow \quad \dot{\mathbf{A}}_i \mathbf{A}_i^T = -\mathbf{A}_i \dot{\mathbf{A}}_i^T
  \]

- Quick remarks
  - The matrix \( \dot{\mathbf{A}}_i \mathbf{A}_i^T \) is a \( 3 \times 3 \) matrix
  - The matrix \( \dot{\mathbf{A}}_i \mathbf{A}_i^T \) is skew-symmetric

- CONCLUSION: there must be a vector, \( \omega_i \), whose cross product matrix is equal to the \( 3 \times 3 \) skew symmetric matrix \( \dot{\mathbf{A}}_i \mathbf{A}_i^T \):
  \[
  \ddot{\omega}_i = \dot{\mathbf{A}}_i \mathbf{A}_i^T
  \]

- This vector \( \omega_i \) is called the angular velocity of the L-RF with respect to the G-RF.
Angular Velocity: Represented in G-RF or in L-RF

- Since $A_i$ is orthogonal, rate of change $\dot{A}_i$ of orientation matrix is simply
  \[ \dot{A}_i = \tilde{\omega}_i A_i \]

- Angular velocity vector can be represented in the local reference frame. Skipping details,
  \[ \tilde{\omega}_i = A_i^T \dot{A}_i \]

- Therefore, rate of change $\dot{A}_i$ of orientation matrix can also be represented as
  \[ \dot{A}_i = A_i \tilde{\omega}_i \]

- Notation convention: an over-bar placed on a vector (like $\tilde{\omega}_i$ above) indicates that quantity is a representation of a geometric vector in a local reference frame
New Topic: Using Euler Parameters to Define Rotation Matrix $A$

- **Starting point: Euler’s Theorem**
  
  “If the origins of two right-hand Cartesian reference frames coincide, then the RFs may be brought into coincidence by a single rotation of a certain angle $\chi$ about a carefully chosen unit axis $\mathbf{u}$”

- **Euler’s Theorem proved in the following references:**
  - Wittenburg – Dynamics of Systems of Rigid Bodies (1977)
Warming up…

- Green color - used for quantities that define the Euler rotation: the axis of rotation defined by the **unit** vector $\mathbf{u}$ and the angle $\chi$

- Red color - used to indicate the vectors that need to be summed up to get axis $\mathbf{h}$ of the L-RF

- Blue color - denotes the $\mathbf{f} - \mathbf{g} - \mathbf{h}$ axes of the L-RF

- Black dotted line - support entities (helpers, don’t play any role but only help with the derivation). The angle $\alpha$ measured between the axis of rotation $\mathbf{u}$ and the $\mathbf{k}$ unit vector.

- Other notation used: $||\mathbf{a}|| = a$ \quad $||\mathbf{b}|| = b$ \quad $||\mathbf{c}|| = c$
How Euler Parameters Come to Be

- Using as input $\chi$ and $u$, one can express the vectors $\vec{f}$, $\vec{g}$, and $\vec{h}$ in the global reference frame as

$$
\begin{align*}
\vec{f} &= i(2\cos^2\frac{\chi}{2} - 1) + 2u(u^T i)\sin^2\frac{\chi}{2} + 2\dot{u}i\sin\frac{\chi}{2}\cos\frac{\chi}{2}, \\
\vec{g} &= j(2\cos^2\frac{\chi}{2} - 1) + 2u(u^T j)\sin^2\frac{\chi}{2} + 2\dot{u}j\sin\frac{\chi}{2}\cos\frac{\chi}{2}, \\
\vec{h} &= k(2\cos^2\frac{\chi}{2} - 1) + 2u(u^T k)\sin^2\frac{\chi}{2} + 2\dot{u}k\sin\frac{\chi}{2}\cos\frac{\chi}{2}
\end{align*}
$$

- The expression of $\vec{f}$, $\vec{g}$, and $\vec{h}$ justifies the introduction of the following generalized coordinates (the “Euler Parameters”):

$$
p = \begin{bmatrix} e_0 \\ e_1 \\ e_2 \\ e_3 \end{bmatrix} \quad \text{where} \quad e_0 = \cos\frac{\chi}{2} \quad \text{and} \quad e \equiv \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = u\sin\frac{\chi}{2}
$$

- Note: $u$ unit vector $\Rightarrow$ values of $e_0$, $e_1$, $e_2$, and $e_3$ must satisfy the normalization condition

$$
e_0^2 + e_1^2 + e_2^2 + e_3^2 = e_0^2 + e^T e = 1$$
Orientation Matrix, Based on Euler Parameters

- Based on definition of $e_0, e_1, e_2,$ and $e_3,$

\[
\begin{align*}
  f &= [(2e_0^2 - 1)I + 2(ee^T + e_0\tilde{e})]i \\
  g &= [(2e_0^2 - 1)I + 2(ee^T + e_0\tilde{e})]j \\
  h &= [(2e_0^2 - 1)I + 2(ee^T + e_0\tilde{e})]k
\end{align*}
\]

- Recall that $A = [f \ g \ h]$ 
- Therefore,

\[
A = [(2e_0^2 - 1)I + 2(ee^T + e_0\tilde{e})]
\]

- Equivalently,

\[
A = 2 \begin{bmatrix}
  e_0^2 + e_1^2 - \frac{1}{2} & e_1e_2 - e_0e_3 & e_1e_3 + e_0e_2 \\
  e_1e_2 + e_0e_3 & e_0^2 + e_2^2 - \frac{1}{2} & e_2e_3 - e_0e_1 \\
  e_1e_3 - e_0e_2 & e_2e_3 + e_0e_1 & e_0^2 + e_3^2 - \frac{1}{2}
\end{bmatrix}
\]
So far, focus was only on the rotation of a rigid body

Body connected to ground through a spherical joint
- Body experienced an arbitrary rotation

Yet bodies are experiencing both translation and rotation
3D Kinematics of Rigid Body: Problem Backdrop

- Framework and Notation Conventions:
  - A L-RF is attached to the rigid body at some location denoted by $O'$
  - Relative to the G-RF, point $O'$ is located by vector $\vec{r}$
  - L-RF defined by vectors $\vec{f}$, $\vec{g}$, $\vec{h}$
  - An arbitrary point $P$ of the rigid body is considered. Its location relative to the L-RF is provided through the vector $\vec{s}^P$
3D Rigid Body Kinematics: Position of an Arbitrary Point \( P \)

- The Geometric View:
  \[
  \overrightarrow{OP} = \overrightarrow{O'O} + \overrightarrow{O'P}
  \]
  \[
  \vec{r}^P = \vec{r} + \vec{s}^P
  \]

- The Algebraic Representation:
  \[
  \vec{r}^P = \vec{r} + \vec{s}^P = \vec{r} + A\vec{s}^P
  \]

- Important observation:
  - The vector \( \vec{s}^P \) that provides the location of \( P \) in the L-RF is a constant vector
    * True because the body is assumed to be rigid
3D Rigid Body Kinematics: Velocity of Arbitrary Point P

• In the Geometric Vector world:

\[ \vec{v}^P = \frac{d\vec{r}^P}{dt} = \dot{\vec{r}} + \dot{s}^P = \dot{\vec{r}} + \vec{\omega} \times \vec{s}^P \]

• Using the Algebraic Vector representation (Chrono):

\[ \dot{\vec{r}}^P = \dot{\vec{r}} + \dot{s}^P = \dot{\vec{r}} + \dot{\vec{A}}\vec{s}^P = \dot{\vec{r}} + \vec{\omega}A\vec{s}^P = \dot{\vec{r}} + \vec{\omega}s^P \]

• In plain words: the velocity \( \dot{\vec{r}}^P \) of a point P is equal to the sum of the velocity \( \dot{\vec{r}} \) of the point where the L-RF is located and the velocity \( \vec{\omega}s^P \) due to the rotation with angular velocity \( \vec{\omega} \) of the rigid body.
3D Rigid Body Kinematics: Acceleration of Arbitrary Point P

- In the Geometric Vector world, by definition:

\[
\ddot{\mathbf{r}}^P \equiv \frac{d^2 \mathbf{r}^P}{dt^2} = \ddot{\mathbf{r}} + \dot{\omega} \times \dot{\mathbf{r}}^P + \ddot{\omega} \times \mathbf{s}^P
\]

- Using the Algebraic Vector representation (Chrono):

\[
\mathbf{a}^P \equiv \ddot{\mathbf{r}}^P = \ddot{\mathbf{r}} + \dot{s}^P = \ddot{\mathbf{r}} + \tilde{\omega} \tilde{\omega} \mathbf{s}^P + \tilde{\omega} \mathbf{\dot{s}}^P = \ddot{\mathbf{r}} + \tilde{\omega} \tilde{\omega} \mathbf{s}^P + \tilde{\omega} \mathbf{s}^P
\]
Putting Things in Perspective: What We’ve Covered so Far

• Discussed how to get the expression of a geometric vector in a “destination” reference frame knowing its expression in a “source” reference frame
  • Done via rotation matrix A

• Euler Parameters: a way of computing the A matrix when knowing the axis of rotation and angle of rotation

• Rate of change of the orientation matrix A → led to the concept of angular velocity

• Position, velocity and acceleration of a point P attached to a rigid body
Looking Ahead

• Kinematic constraints; i.e., joints

• Formulating the equations of motion
New Topic:
Kinematic Constraints

• Geometric Constraint (GCon): a real world geometric attribute of the motion of the mechanical system
  • Examples:
    • Particle moves around point (1,2,3) on a sphere of radius 2.0
    • A unit vector $\mathbf{u}_6$ on body 6 is perpendicular on a certain unit vector $\mathbf{u}_9$ on body 9
    • The $y$ coordinate of point Q on body 8 is 14.5

• Algebraic Constraint Equations (ACEs): in the virtual world, a collection of one or more algebraic constraints, involving the generalized coordinates of the mechanism and possibly time $t$, that capture the geometry of the motion as induced by a certain Geometric Constraint
  • Examples:
    • $(x - 1)^2 + (y - 2)^2 + (z - 3)^2 - 4 = 0$
    • $\mathbf{u}_6^T \cdot \mathbf{u}_9 = 0$
    • $[0 \ 1 \ 0] \cdot r_Q - 14.5 = 0$

• Modeling: the process that starts with the idealization of the real world to yield a GCon and continues with the GCon abstracting into a set of ACEs
Basic Geometric Constraints (GCons)

- We have four basic GCons:
  - DP1: the dot product of two vectors on two bodies is specified
  - DP2: the dot product of a vector of on a body and a vector between two bodies is specified
  - D: the distance between two points on two different bodies is specified
  - CD: the difference between the coordinates of two bodies is specified

- Note:
  - DP1 stands for Dot Product 1
  - DP2 stands for Dot Product 2
  - D stands for distance
  - CD stands for coordinate difference
Basic GCon: DP1

- Geometrically:
  \[ \mathbf{a}_i \cdot \mathbf{a}_j - f(t) = 0 \]

- Algebraically (matrix-vector notation):
  \[ \Phi_{DP1}(i, \mathbf{a}_i, j, \mathbf{a}_j, f(t)) = \mathbf{a}_i^T A_i^T A_j \mathbf{a}_j - f(t) = 0 \]
Basic GCon: DP2

- Geometrically:
  \[ \vec{a}_i \cdot \vec{d}_{ij} - f(t) = 0 \]

- Algebraically (matrix-vector notation):
  \[
  \Phi^{DP2}(i, \vec{a}_i, \vec{s}_i^P, j, \vec{s}_j^Q, f(t)) = \vec{a}_i^T \mathbf{A}_i^T \mathbf{d}_{ij} - f(t) = 0
  \]
  \[
  = \vec{a}_i^T \mathbf{A}_i^T (\mathbf{r}_j + \mathbf{A}_j \vec{s}_j^Q - \mathbf{r}_i - \mathbf{A}_i \vec{s}_i^P) - f(t) = 0
  \]
Basic GCon: D

- Geometrically:
  \[ \vec{d}_{ij} \cdot \vec{d}_{ij} - f^2(t) = 0 \]

- Algebraically (matrix-vector notation):
  \[ \Phi^D(i, \vec{s}_i^P, j, \vec{s}_j^Q, f(t)) = \begin{pmatrix} d_{ij} \\ \vdots \end{pmatrix}^T \begin{pmatrix} d_{ij} \\ \vdots \end{pmatrix} - f^2(t) \]
  \[ = (\vec{r}_j + A_j \vec{s}_j^Q - \vec{r}_i - A_i \vec{s}_i^P)^T (\vec{r}_j + A_j \vec{s}_j^Q - \vec{r}_i - A_i \vec{s}_i^P) - f^2(t) = 0 \]
Basic GCon: CD

- Geometrically (\( \mathbf{c} \) is a constant vector):

\[
\mathbf{c} \cdot (\mathbf{a}_j - \mathbf{a}_i) - f(t) = 0
\]

- Algebraically (matrix-vector notation):

\[
\Phi^{CD}(\mathbf{c}, i, \mathbf{s}_i^P, j, \mathbf{s}_j^Q, f(t)) = \mathbf{c}^T \mathbf{d}_{ij} - f(t) = \mathbf{c}^T (\mathbf{r}_j + \mathbf{A}_j \mathbf{s}_j^Q - \mathbf{r}_i - \mathbf{A}_i \mathbf{s}_i^P) - f(t) = 0
\]
Intermediate GCons

• Two Intermediate GCons:
  • \( \perp_1 \): a vector is perpendicular on a plane belonging to a different body
  • \( \perp_2 \): a vector between two bodies is perpendicular to a plane belonging to the different body
Intermediate GCon: ⊥ 1 (Perpendicular Type 1)

- Geometrically, the motion is such that a vector \( \mathbf{c}_j \) on body \( j \) is perpendicular to a plane of body \( i \) that is defined by \( \mathbf{a}_i \) and \( \mathbf{b}_i \)

- Algebraically (matrix-vector notation):

\[
\Phi^{-1}(i, \bar{a}_i, \bar{b}_i, j, \bar{c}_j) = 
\begin{bmatrix}
\Phi^{DP1}(i, \bar{a}_i, j, \bar{c}_j, 0) \\
\Phi^{DP1}(i, \bar{b}_i, j, \bar{c}_j, 0)
\end{bmatrix} = 
\begin{bmatrix}
\bar{a}_i^T A_i^T A_j \bar{c}_j \\
\bar{b}_i^T A_i^T A_j \bar{c}_j
\end{bmatrix} = 
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
Intermediate GCon: $\perp 2$ (Perpendicular Type 2)

- Geometrically, a vector $\overrightarrow{P_iQ_j}$ from body $i$ to body $j$ remains perpendicular to a plane defined by two vectors $\tilde{a}_i$ and $\tilde{b}_i$

- Algebraically (matrix-vector notation):

$$\Phi_{\perp 2}^{DP2}(i, \tilde{a}_i, \tilde{b}_i, \bar{s}_i^P, j, \bar{s}_j^Q) = \begin{bmatrix} \Phi_{DP2}^{DP2}(i, \tilde{a}_i, \bar{s}_i^P, j, \bar{s}_j^Q, 0) \\
\Phi_{DP2}^{DP2}(i, \tilde{b}_i, \bar{s}_i^P, j, \bar{s}_j^Q, 0) \end{bmatrix} = \begin{bmatrix} \tilde{a}_i^T A_i^T d_{ij} \\
\tilde{b}_i^T A_i^T d_{ij} \end{bmatrix} = 0$$
High Level GCons

- High Level GCons also called joints:
  - Spherical Joint (SJ)
  - Universal Joint (UJ)
  - Cylindrical Joint (CJ)
  - Revolute Joint (RJ)
  - Translational Joint (TJ)
  - Other composite joints (spherical-spherical, translational-revolute, etc.)
High Level GCon: SJ [Spherical Joint]

\[
\Phi^{SJ} = \begin{bmatrix}
\Phi^{CD}(i, i, \bar{s}_i^P, j, \bar{s}_j^Q, 0) \\
\Phi^{CD}(j, i, \bar{s}_i^P, j, \bar{s}_j^Q, 0) \\
\Phi^{CD}(k, i, \bar{s}_i^P, j, \bar{s}_j^Q, 0)
\end{bmatrix}
\]
High Level GCon: CJ [Cylindrical Joint]
High Level GCon: TJ [Translational Joint]

\[
\Phi^{TJ} = \begin{bmatrix}
\Phi^{CJ}(i, s_i^P, \bar{a}_i, \bar{b}_i, j, s_j^Q, c_j) \\
\Phi^{DP1}(i, \bar{a}_i, j, \bar{a}_j, \text{const.})
\end{bmatrix}
\]
High Level GCon: RJ [Revolute Joint]

\[
\Phi^{RJ} = \begin{bmatrix}
\Phi^{SJ}(i, s^P_i, j, s^Q_j) \\
\Phi^{\perp 1}(i, \tilde{a}_i, \tilde{b}_j, j, \tilde{c}_j)
\end{bmatrix}
\]
High Level GCon: UJ [Universal Joint]

$$\Phi_{UJ} = \begin{bmatrix} \Phi^{SJ}(i, \tilde{s}^P_i, j, \tilde{s}^Q_j) \\ \Phi^{DP1}(i, \bar{a}_i, j, \bar{a}_j, 0) \end{bmatrix}$$

Figure 9.4.15  Singular behavior of universal joint.
### Connection Between Basic and Intermediate/High Level GCons

<table>
<thead>
<tr>
<th></th>
<th>$DP_1$</th>
<th>$DP_2$</th>
<th>$D$</th>
<th>$CD$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bot 1$</td>
<td>$\times \times$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bot 2$</td>
<td></td>
<td>$\times \times$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$SJ$</td>
<td></td>
<td></td>
<td>$\times \times \times$</td>
<td></td>
</tr>
<tr>
<td>$UJ$</td>
<td>$\times$</td>
<td></td>
<td></td>
<td>$[\times \times \times]_{SJ}$</td>
</tr>
<tr>
<td>$CJ$</td>
<td>$[\times \times]_{\bot 1}$</td>
<td>$[\times \times]_{\bot 2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$RJ$</td>
<td>$[\times \times]_{\bot 1}$</td>
<td></td>
<td></td>
<td>$[\times \times \times]_{SJ}$</td>
</tr>
<tr>
<td>$TJ$</td>
<td>$\times [\times \times]_{\bot 1}$</td>
<td>$[\times \times]_{\bot 2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Note that there are other GCons that are used, but they see less mileage.
Constraints Supported in Chrono
New Topic:
Formulating the Equations of Motion

• Road map, full derivation of constrained equations of motion
  
  • Step 1: Introduce the types of force acting on one body present in a mechanical system
    • Distributed
    • Concentrated
  
  • Step 2: Express the virtual work produced by each of these forces acting on one body
  
  • Step 3: Evaluate the virtual work for the entire mechanical system
  
  • Step 4: Apply principle of virtual work (via D’Alembert’s principle) to obtain the EOM
Generic Forces/Torques Acting on a Mechanical System

• Distributed forces
  • Inertia forces
  • Volume/Mass distributed force (like gravity, electromagnetic, etc.)
  • Internal forces

• Concentrated forces/torques
  • Reaction forces/torques (induces by the presence of kinematic constraints)
  • Externally applied forces and torques (me pushing a cart)
Virtual Work for One Body, Side Trip

- Quick example below only shows virtual work produced by the **inertial force**
  - Same recipe applied for all other forces, distributed or concentrated

- Starting point: consider point $P$ of body $i$ associated with infinitesimal mass element $dm_i(P)$

- Expression of the force:
  \[-\ddot{r}_i^P \, dm_i(P)\]

- Virtual work produced:
  \[
  [\delta \mathbf{r}_i^P]^T \cdot [\ddot{r}_i^P \, dm_i(P)]
  \]

- Body virtual work obtained by summing over all points $P$ of body $i$:
  \[
  \delta W = \int_{m_i} -[\delta \mathbf{r}_i^P]^T \cdot \ddot{r}_i^P \, dm_i(P)
  \]

- Upon expressing virtual displacement of $P$ and its acceleration $\ddot{r}_i^P$:
  \[
  \delta W = \int_{m_i} [\delta \mathbf{r}_i^T + \delta \pi_i^T \mathbf{s}_i^P \mathbf{A}_i^T] \cdot [\ddot{r}_i + \mathbf{A}_i \ddot{\omega}_i \mathbf{s}_i^P + \mathbf{A}_i \dddot{\omega}_i \mathbf{\dddot{s}}_i^P] \, dm_i(P) = \delta \mathbf{r}_i^T \, m_i \ddot{r}_i + \delta \pi_i^T [\dddot{\omega}_i \mathbf{J}_i \ddot{\omega}_i + \mathbf{\dddot{J}}_i \dot{\omega}_i]}
  \]
Final Form, Expression of Virtual Work

- When all said and done, the expression of the virtual work assumes the form:

\[
\delta W = \sum_{i=1}^{nb} \left[ -\delta \mathbf{r}_i^T \mathbf{m}_i \ddot{\mathbf{r}}_i - \delta \mathbf{\bar{n}}_i^T \ddot{\mathbf{\bar{\imath}}} i \mathbf{\bar{J}}_i \dot{\mathbf{\bar{\omega}}}_i - \delta \mathbf{\bar{n}}_i^T \mathbf{\bar{J}}_i \dot{\mathbf{\bar{\omega}}}_i + \delta \mathbf{r}_i^T \cdot \mathbf{F}_i^m + \delta \mathbf{\bar{n}}_i^T \cdot \mathbf{\bar{n}}_i^m \\
+ \delta \mathbf{r}_i^T \mathbf{F}_i^a + \delta \mathbf{\bar{n}}_i^T \mathbf{\bar{n}}_i^a + \delta \mathbf{r}_i^T \mathbf{F}_i^r + \delta \mathbf{\bar{n}}_i^T \mathbf{\bar{n}}_i^r \right] = 0
\]

- Alternatively,

\[
\delta W = \sum_{i=1}^{nb} \left[ \delta \mathbf{r}_i^T \left( -m_i \ddot{\mathbf{r}}_i + \mathbf{F}_i^m + \mathbf{F}_i^a + \mathbf{F}_i^r \right) + \delta \mathbf{\bar{n}}_i^T \left( -\ddot{\mathbf{\bar{\imath}}} i \mathbf{\bar{J}}_i \dot{\mathbf{\bar{\omega}}}_i - \mathbf{\bar{J}}_i \dot{\mathbf{\bar{\omega}}}_i + \mathbf{\bar{n}}_i^m + \mathbf{\bar{n}}_i^a + \mathbf{\bar{n}}_i^r \right) \right] = 0
\]
Moving from One Body to a Mechanical System

- Total virtual work, for the entire system, assumes the form:

\[
\delta W = \sum_{i=1}^{nb} \left[ -\delta \mathbf{r}_i^T \ddot{\mathbf{r}}_i m_i - \delta \pi_i^T \ddot{\mathbf{\pi}}_i \mathbf{I}_i \ddot{\mathbf{\omega}}_i - \delta \mathbf{\pi}_i^T \mathbf{J}_i \dot{\mathbf{\omega}}_i + \delta \mathbf{r}_i^T \cdot \mathbf{F}_i^m + \delta \pi_i^T \cdot \mathbf{n}_i^m \\
+ \delta \mathbf{r}_i^T \mathbf{F}_i^a + \delta \pi_i^T \mathbf{n}_i^a + \delta \mathbf{r}_i^T \mathbf{F}_i^r + \delta \mathbf{\pi}_i^T \mathbf{n}_i^r \right] = 0
\]

- Alternatively,

\[
\delta W = \sum_{i=1}^{nb} \left[ \delta \mathbf{r}_i^T \left( -\ddot{\mathbf{r}}_i m_i + \mathbf{F}_i^m + \mathbf{F}_i^a + \mathbf{F}_i^r \right) + \delta \pi_i^T \left( -\ddot{\mathbf{\pi}}_i \mathbf{I}_i \ddot{\mathbf{\omega}}_i - \mathbf{J}_i \dot{\mathbf{\omega}}_i + \mathbf{n}_i^m + \mathbf{n}_i^a + \mathbf{n}_i^r \right) \right] = 0
\]

- Recall that for each body \( i \), virtual translations \( \delta \mathbf{r}_i \) and virtual rotations \( \delta \pi_i \) are arbitrary
Equations of Motion (EOM) for A System of Rigid Bodies

- Since equation on previous slide should hold for any set of virtual displacements \((\delta r_1, \delta \pi_1), (\delta r_2, \delta \pi_2), \ldots, (\delta r_{nb}, \delta \pi_{nb})\), then we necessarily have that for \(i = 1, \ldots, nb\):
  \[
  -m_i \ddot{r}_i + F^m_i + F^a_i + F^r_i = 0_3 \\
  -\ddot{\omega}_i \dddot{\omega}_i - \dddot{J}_i \dot{\omega}_i + \dddot{n}_i^m + \dddot{n}_i^a + \dddot{n}_i^r = 0_3
  \]

- Equivalently, for \(i = 1, \ldots, nb\)
  \[
  m_i \ddot{r}_i = F^m_i + F^a_i + F^r_i \\
  \dddot{J}_i \dot{\omega}_i = \dddot{n}_i^m + \dddot{n}_i^a + \dddot{n}_i^r - \dddot{\omega}_i \dddot{J}_i \dot{\omega}_i
  \]

- The set of equations above represent the EOM for the system of \(nb\) rigid bodies.
The Joints (Kinematic Constraints) Lead to Reaction Forces

- The collection of all \( nc \) kinematic and driving constraints – stack them together:

\[
\Phi(q, t) = \begin{bmatrix} \Phi^K(q) \\ \Phi^D(q, t) \end{bmatrix} = 0_{nc}
\]

- Recall that any one of the constraints in \( \Phi \) is one of the four basic GCons introduced earlier.

- The variation of \( \Phi \): stack together the variation of each of the GCons that enters in \( \Phi \).

- A virtual displacement of the bodies in the system will lead to a virtual variation \( \delta \Phi \) that depends on the position and orientation of the bodies:

\[
\delta \Phi = \Phi_r \delta r + \Pi(\Phi) \delta \pi = 0_{nc}
\]

- In matrix form, we can express the above relations as

\[
\delta \Phi(r, p) = [ \Phi_r \quad \Pi(\Phi) ] \cdot \begin{bmatrix} \delta r \\ \delta \pi \end{bmatrix} = \mathcal{R}(\Phi) \cdot \begin{bmatrix} \delta r \\ \delta \pi \end{bmatrix} = 0_{nc}
\]

- \( \Phi_r \) and \( \Pi(\Phi) \): the key ingredients needed to express the reaction forces induced by the constraints \( \Phi(q, t) = 0_{nc} \).
Switching to Matrix-Vector Notation

- Notation used to simplify expression of EOM:
  - $I_3$ is the identity matrix of dimension 3
  - $F^a_i$ and $F^m_i$ – applied and mass-distributed force, body $i$
  - $\vec{n}^a_i$ and $\vec{n}^m_i$ – applied and mass-distributed torque, body $i$
  - $m_i$ and $\vec{J}_i$ – mass and mass moment of inertia, body $i$

- Matrix-vector notation:

$$M = \begin{bmatrix}
m_1 I_3 & 0_{3\times 3} & \ldots & 0_{3\times 3} \\
0_{3\times 3} & m_2 I_3 & \ldots & 0_{3\times 3} \\
\vdots & \vdots & \ddots & \vdots \\
0_{3\times 3} & 0_{3\times 3} & \ldots & m_{nb} I_3
\end{bmatrix} \quad \qa
EOM: the Newton-Euler Form

- According to Lagrange Multiplier theorem, there exists a vector of Lagrange Multipliers, \( \lambda = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{nc} \end{bmatrix} \), so that

\[
\begin{bmatrix}
\mathbf{M}\ddot{\mathbf{r}} - \mathbf{F} \\
\mathbf{J}\ddot{\omega} - \tau
\end{bmatrix}
+ \begin{bmatrix}
\Phi_r^T \\
\Pi^T(\Phi)
\end{bmatrix} \lambda = \mathbf{0}_{6nb}
\]

- Expression above: \textbf{Newton-Euler form of the EOM}. Equivalently expressed as:

\[
\begin{cases}
\mathbf{M}\ddot{\mathbf{r}} + \Phi_r^T \lambda = \mathbf{F} \\
\mathbf{J}\ddot{\omega} + \Pi^T(\Phi)\lambda = \tau
\end{cases}
\]