
General Theoretical Concepts 
Related to Multibody Dynamics



Before Getting Started

• Material draws on two main sources

• Ed Haug’s book, available online: http://sbel.wisc.edu/Courses/ME751/2010/bookHaugPointers.htm

• Course notes, available at: http://sbel.wisc.edu/Courses/ME751/2016/
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Looking Ahead

• Purpose of this segment:
• Quick discussion of several theoretical concepts that come up time and again when using Chrono

• Concepts covered
• Reference frames and changes of reference frames

• Elements of the kinematics of a 3D body (position, velocity and acceleration of a body) 

• Kinematic constraints (joints)

• Formulating the equations of motion
• Newton-Euler equations of motion (via D’Alembert’s Principle)
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Reference Frames in 3D Kinematics. Problem Setup

• Global Reference Frame (G-RF) attached to ground at point O

• Imagine point P is fixed (red-pen mark) on the rigid body

• Rigid body has a reference frame attached (fixed) to it
• Assume its origin is at O (same as G-RF)
• Called Local Reference Frame (L-RF) – shown in blue
• Axes: 𝐟𝐟, 𝐠𝐠, 𝐡𝐡

• Question of interest:
• What is the relationship between the coordinates of point P in G-RF and L-RF?
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More Formal Way of Posing the Question
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Relationship Between L-RF Vectors and G-RF Vectors
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Punch Line, Change of Reference Frame
(from “source” to “destination”)

7

f


g

h


i


j


k


O

P



The Bottom Line: Moving from RF to RF

• Representing the same geometric vector in two different RFs leads to the concept of “rotation 
matrix”, or “transformation matrix” 𝐀𝐀𝑑𝑑𝑑𝑑: 

• Getting the new coordinates, that is, representation of the same geometric vector in the new RF is as 
simple as multiplying the coordinates by the rotation matrix 𝐀𝐀𝑑𝑑𝑑𝑑:

• NOTE 1: what is changed is the RF used to represent the vector
• We are talking about the *same* geometric vector, represented in two RFs

• NOTE 2: rotation matrix 𝐀𝐀𝑑𝑑𝑑𝑑 sometimes called “orientation matrix”
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Rotation Matrix is Orthogonal
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Summarizing Key Points, Reference Frames
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New Topic: 
Angular Velocity. 3D Problem Setup

• Global Reference Frame (G-RF) attached to ground at point O

• Imagine point P is fixed (red-pen mark) on the rigid body

• Rigid body has a reference frame attached to it
• Assume its origin is at O (same as G-RF)
• Local Reference Frame (L-RF) – shown in blue
• Axes: 𝐟𝐟, 𝐠𝐠, 𝐡𝐡

• Question of interest:
• How do we express rate of change of blue RF wrt global RF?
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Angular Velocity, Getting There…
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Angular Velocity: Represented in G-RF or in L-RF
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New Topic:
Using Euler Parameters to Define Rotation Matrix A

• Starting point: Euler’s Theorem
“If the origins of two right-hand Cartesian reference frames coincide, then the RFs may be brought into 
coincidence by a single rotation of a certain angle χ about a carefully chosen unit axis u”

• Euler’s Theorem proved in the following references:
• Wittenburg – Dynamics of Systems of Rigid Bodies (1977)
• Goldstein – Classical Mechanics, 2nd edition, (1980)
• Angeles – Fundamentals of Robotic Mechanical Systems (2003)

14



Warming up…
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How Euler Parameters Come to Be
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Orientation Matrix, Based on Euler Parameters
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New Topic:
Beyond Rotations – Full 3D Kinematics of Rigid Bodies

• So far, focus was only on the rotation of a rigid body

• Body connected to ground through a spherical joint
• Body experienced an arbitrary rotation

• Yet bodies are experiencing both translation and 
rotation
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3D Kinematics of Rigid Body: Problem Backdrop
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3D Rigid Body Kinematics: Position of an Arbitrary Point P
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3D Rigid Body Kinematics: Velocity of Arbitrary Point P
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• In the Geometric Vector world:

• Using the Algebraic Vector representation (Chrono):



3D Rigid Body Kinematics: Acceleration of Arbitrary Point P
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• Using the Algebraic Vector representation (Chrono):

• In the Geometric Vector world, by definition:



Putting Things in Perspective: What We’ve Covered so Far

• Discussed how to get the expression of a geometric vector in a “destination” reference 
frame knowing its expression in a “source” reference frame

• Done via rotation matrix A

• Euler Parameters: a way of computing the A matrix when knowing the axis of rotation and 
angle of rotation

• Rate of change of the orientation matrix A → led to the concept of angular velocity

• Position, velocity and acceleration of a point P attached to a rigid body
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Looking Ahead

• Kinematic constraints; i.e., joints

• Formulating the equations of motion
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New Topic:
Kinematic Constraints
• Geometric Constraint (GCon): a real world geometric attribute of the motion of the mechanical system 

• Examples: 
• Particle moves around point (1,2,3) on a sphere of radius 2.0
• A unit vector u6 on body 6 is perpendicular on a certain unit vector u9 on body 9
• The 𝑦𝑦 coordinate of point Q on body 8 is 14.5

• Algebraic Constraint Equations (ACEs): in the virtual world, a collection of one or more algebraic constraints, involving 
the generalized coordinates of the mechanism and possibly time t, that capture the geometry of the motion as induced 
by a certain Geometric Constraint

• Examples:

• Modeling: the process that starts with the idealization of the real world to yield a GCon and continues with the GCon
abstracting into a set of ACEs
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Basic Geometric Constraints (GCons)

• We have four basic GCons:
• DP1: the dot product of two vectors on two bodies is specified
• DP2: the dot product of a vector of on a body and a vector between two bodies is specified
• D: the distance between two points on two different bodies is specified
• CD: the difference between the coordinates of two bodies is specified

• Note:
• DP1 stands for Dot Product 1
• DP2 stands for Dot Product 2
• D stands for distance
• CD stands for coordinate difference
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Basic GCon: DP1
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Basic GCon: DP2
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Basic GCon: D

29

X
YO

xi’
yi’

Body i

Body j

xj’
yj’

Z

zi’ zj’

G-RF

L-RFj

L-RFi



Basic GCon: CD
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Intermediate GCons

• Two Intermediate GCons:
• ⊥1: a vector is perpendicular on a plane belonging to a different body
• ⊥2: a vector between two bodies is perpendicular to a plane belonging to the different body
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Intermediate GCon: ⊥1 (Perpendicular Type 1)
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Intermediate GCon: ⊥2 (Perpendicular Type 2)
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High Level GCons

• High Level GCons also called joints:
• Spherical Joint (SJ)
• Universal Joint (UJ)
• Cylindrical Joint (CJ)
• Revolute Joint (RJ)
• Translational Joint (TJ)
• Other composite joints (spherical-spherical, translational-revolute, etc.)
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High Level GCon: SJ [Spherical Joint]

35



High Level GCon: CJ [Cylindrical Joint]
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High Level GCon: TJ [Translational Joint]



High Level GCon: RJ [Revolute Joint]
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High Level GCon: UJ [Universal Joint]
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Connection Between Basic and Intermediate/High Level GCons

40• Note that there are other GCons that are used, but they see less mileage



Constraints Supported in Chrono
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New Topic: 
Formulating the Equations of Motion

• Road map, full derivation of constrained equations of motion

• Step 1: Introduce the types of force acting on one body present in a mechanical system
• Distributed
• Concentrated

• Step 2: Express the virtual work produced by each of these forces acting on one body

• Step 3: Evaluate the virtual work for the entire mechanical system

• Step 4: Apply principle of virtual work (via D’Alembert’s principle) to obtain the EOM
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Generic Forces/Torques Acting on a Mechanical System

• Distributed forces
• Inertia forces
• Volume/Mass distributed force (like gravity, electromagnetic, etc.)
• Internal forces

• Concentrated forces/torques
• Reaction forces/torques (induces by the presence of kinematic constraints)
• Externally applied forces and torques (me pushing a cart)
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Virtual Work for One Body, Side Trip
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Final Form, Expression of Virtual Work

45



Moving from One Body to a Mechanical System

46



Equations of Motion (EOM) for A System of Rigid Bodies
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The Joints (Kinematic Constraints) Lead to Reaction Forces
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Switching to Matrix-Vector Notation
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EOM: the Newton-Euler Form
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