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Before Getting Started

e Material draws on two main sources

e Ed Haug’s book, available online: http://sbel.wisc.edu/Courses/ME751/2010/bookHaugPointers.htm

e Course notes, available at: http://sbel.wisc.edu/Courses/ME751/2016/



http://sbel.wisc.edu/Courses/ME751/2010/bookHaugPointers.htm
http://sbel.wisc.edu/Courses/ME751/2016/
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Looking Ahead

e Purpose of this segment:
e Quick discussion of several theoretical concepts that come up time and again when using Chrono

e Concepts covered
e Reference frames and changes of reference frames

e Elements of the kinematics of a 3D body (position, velocity and acceleration of a body)
e Kinematic constraints (joints)

* Formulating the equations of motion
 Newton-Euler equations of motion (via D’Alembert’s Principle)
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Reference Frames in 3D Kinematics. Problem Setup

e Global Reference Frame (G-RF) attached to ground at point O
e Imagine point P is fixed (red-pen mark) on the rigid body

e Rigid body has a reference frame attached (fixed) to it

e Assume its origin is at O (same as G-RF)
e Called Local Reference Frame (L-RF) — shown in blue

e Axes: f, g, h

e Question of interest:
e What is the relationship between the coordinates of point P in G-RF and L-RF?



More Formal Way of Posing the Question

e Let = @ be a geometric vector (see figure)

— —

e In the G-RF defined by (i, j, E), the geometric vector q is represented as
d=gz1+qyj+ ¢k
e In the L-RF defined by (f" g, ﬁ), the geometric vector  is represented as

d=q@f+ g+ g:h

e QUESTION: how are (¢s,4y,q-) and (G, @y, ¢-) related?
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Relationship Between L-RF Vectors and G-RF Vectors

T = 6111_i> + ang + aglf

aii ai2 ais
f =1 ax g = | ax h = as
asi a32 as3
a1 = 1 - f =cos 9(?? ?) a1 = T f = cos Q(T? ?) as; = K - £
0112—_i)'§:0089(_i:§)) 622=T'§:COSQ(T;§>) 632=E> g =
0513—_i)'E):COSQ(T>,E)) ass = j E)—COSQ(.] h) 53 =K - E)—COSH(

There is a good reason the values a;; above are called “direction cosines”.
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Punch Line, Change of Reference Frame
(from “source” to “destination”)

Qx a1l a12 a13| | Qs

Gy | = |Q21 a22 a23| |Qy

| 42 | la31 a3z asz| [9:]
|qd — Ads s

aip aiz2 a3
A= axy ax a3 | =[f g h]
azip asz2 a3s3

ali ai2 ais
f=1| axn g=| ao h= | ay
asi as2 a33
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The Bottom Line: Moving from RF to RF

e Representing the same geometric vector in two different RFs leads to the concept of “rotation
matrix”, or “transformation matrix” A s:

* Getting the new coordinates, that is, representation of the same geometric vector in the new RF is as
simple as multiplying the coordinates by the rotation matrix A 4,:

q= Ads(_l

e NOTE 1: what is changed is the RF used to represent the vector
 We are talking about the *same™ geometric vector, represented in two RFs

e NOTE 2: rotation matrix A 5 sometimes called “orientation matrix”



Rotation Matrix is Orthogonal

Recall that f , g, and h are mutually orthogonal

Recall that f , g, and h are are unit vectors

Therefore, the following holds:
flff=glg=h'h=1
flg =g’h=hif=0

Consequently, the rotation matrix A is orthogonal

ATA = AAT =154
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Summarizing Key Points, Reference Frames

e Started with the representation q, of a gecometric vector q in a “source” reference frame s
e The representation of the geometric vector q in a “destination” reference frame d is given by
dd = AdsQs

e Matrix Ay, called transformation, or rotation matrix (taking vector from the source RF s to the
destination RF d)

e DBecause Ay, is orthogonal, one has that

T . T
qs = A .44 therefore A=Ay,
e Many times, the “destination” RF is the global reference frame (G-RF'), which has ID “0”

— In this case, we don’t show “0” anymore, simply call A instead of Ags
10



New Topic:
Angular Velocity. 3D Problem Setup

Global Reference Frame (G-RF) attached to ground at point O
e Imagine point P is fixed (red-pen mark) on the rigid body

e Rigid body has a reference frame attached to it
e Assume its origin is at O (same as G-RF)
e Local Reference Frame (L-RF) —shown in blue
e Axes: f, g, h

e Question of interest:
 How do we express rate of change of blue RF wrt global RF?

11



Angular Velocity, Getting There...
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Recall that A%-A;-T = I3x3. Taking a time derivative yields

AZA;F + A@A? = 03«3 = A@A? = —AZA?

Quick remarks
— The matrix A@A? 1S a 3 X 3 matrix

— The matrix A@A'f is skew-symmetric

CONCLUSION: there must be a vector, w;, whose cross product matrix is equal to the
3 x 3 skew symmetric matrix A; A7

@i = A AT

This vector w; is called the angular velocity of the L-RF with respect to the G-RF.

12
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Angular Velocity: Represented in G-RF or in L-RF

e Since A; is orthogonal, rate of change A; of orientation matrix is simply
A; = A,

e Angular velocity vector can be represented in the local reference frame. Skipping details,
O = A] A,

e Therefore, rate of change A, of orientation matrix can also be represented as
A= Ao,

e Notation convention: an over-bar placed on a vector (like w; above) indicates that quantity

is a representation of a geometric vector in a local reference frame
13



New Topic: e @ @
Using Euler Parameters to Define Rotation Matrix A

e Starting point: Euler’s Theorem

“If the origins of two right-hand Cartesian reference frames coincide, then the RFs may be brought into
coincidence by a single rotation of a certain angle y about a carefully chosen unit axis u”

e Euler’s Theorem proved in the following references:
e Wittenburg — Dynamics of Systems of Rigid Bodies (1977)
e Goldstein — Classical Mechanics, 2" edition, (1980)
e Angeles — Fundamentals of Robotic Mechanical Systems (2003)
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Warming up...

e Green color - used for quantities that define
the Euler rotation: the axis of rotation de-
fined by the unit vector 4 and the angle y

e Red color - used to indicate the vectors that
need to be summed up to get axis h of the
L-RF

e Blue color - denotes the f — g— h axes of the
L-RF

e Black dotted line - support entities (helpers,
don’t play any role but only help with the
derivation). The angle a measured between

the axis of rotation @ and the K unit vector.

e Other notation used: ||a|| = a ||B|| =b |C]| = ¢

15



How Euler Parameters Come to Be
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e Using as input x and u, one can express the vectors f , €, and h in the global reference frame as

f
g

h

2X — 1) 4 2u(u’i)sin*% + 2aisin § cos %

i(2cos” %
j(2cos*% — 1) 4 2u(u’j)sin?% + 2ajsin ¥ cos §

k(2cos?’X — 1) 4+ 2u(u’k)sin?% + 2uksin X cos £

e The expression of f, g, and h justifies the introduction of the following generalized coordinates

(the “Euler Parameters”):

€0
€1
€2
€3

€1

X _ o X

where 60—0085 and e= | e —usm§
€3

e Note: u unit vector = values of e, €1, e2, and ez must satisfy the normalization condition

e%—}—e%—{—e%—kegze%—}—e’re:l 1o
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Orientation Matrix, Based on Euler Parameters

e Based on definition of eg, e, e, and e3,

f = [(2¢2 — 1)I+ 2(eel +ege)]
(2e3 — )T + 2(ee! + ege)]j

= [(2e3 — DI+ 2(ee! + epé)

e Recall that A =[f g h]

e Therefore,
A =[(2¢3 — DI +2(ee! + epé)]

e Equivalently,

6% + 6% — % €169 — epes e1€e3 + epes

A =2 ejes + epes 6(2) + 6% - % €9€3 — epeq

€1€3 — €pe €2€e3 + epeq e% + e% — % 17
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New Topic:
Beyond Rotations — Full 3D Kinematics of Rigid Bodies

e So far, focus was only on the rotation of a rigid body

e Body connected to ground through a spherical joint
 Body experienced an arbitrary rotation

* Yet bodies are experiencing both translation and
rotation

18
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3D Kinematics of Rigid Body: Problem Backdrop

e Framework and Notation Conventions:

— A L-RF is attached to the rigid body
at some location denoted by O’

— Relative to the G-RF, point O’ is lo-
cated by vector r

— L-RF defined by vectors f , &, h

— An arbitrary point P of the rigid body
is considered. Its location relative to

the L-RF is provided through the vec-

tor s

19
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3D Rigid Body Kinematics: Position of an Arbitrary Point P

e The Geometric View:
OP =00 +0'P
U

—»P — —
r :r—l—slD

e The Algebraic Representation:

r’ =r+s” =r+ As”

e Important observation:

— The vector §* that provides the location of P in the L-RF is a constant vector

x True because the body is assumed to be rigid o
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3D Rigid Body Kinematics: Velocity of Arbitrary Point P

* |n the Geometric Vector world:

p_ diT
dt

P

-
—

=r-+s 5P

=r+w xS

e Using the Algebraic Vector representation (Chrono):

P =r 48P =r+ AsP =1+ + QAs” =1+ @s

e In plain words: the velocity i of a point P is equal to the sum of the
velocity 1 of the point where the L-RF is located and the velocity ws? due
to the rotation with angular velocity w of the rigid body

21



3D Rigid Body Kinematics: Acceleration of Arbitrary Point P 0@

* |n the Geometric Vector world, by definition:

2P .
a = —=r+wXwXxXs +wXs

dt?

e Using the Algebraic Vector representation (Chrono):

al =+ =74+ 8° =1+ 0QAsY + OAsY =1 + oost + wst

22
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Putting Things in Perspective: What We’ve Covered so Far

e Discussed how to get the expression of a geometric vector in a “destination” reference
frame knowing its expression in a “source” reference frame

e Done via rotation matrix A

e Euler Parameters: a way of computing the A matrix when knowing the axis of rotation and
angle of rotation

e Rate of change of the orientation matrix A — led to the concept of angular velocity

e Position, velocity and acceleration of a point P attached to a rigid body
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Looking Ahead

* Kinematic constraints; i.e., joints

* Formulating the equations of motion
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Kinematic Constraints

e Geometric Constraint (GCon): a real world geometric attribute of the motion of the mechanical system
e Examples:
e Particle moves around point (1,2,3) on a sphere of radius 2.0
e Aunit vector Ug on body 6 is perpendicular on a certain unit vector ug on body 9
* The y coordinate of point Q on body 8 is 14.5

e Algebraic Constraint Equations (ACEs): in the virtual world, a collection of one or more algebraic constraints, involving
the generalized coordinates of the mechanism and possibly time t, that capture the geometry of the motion as induced
by a certain Geometric Constraint

e Examples: ) , )
g e (1—12+(y—2)2+(2-3)°—4=0
[ ] ug-u9:0

¢ [010]-r¢ —145=0

* Modeling: the process that starts with the idealization of the real world to yield a GCon and continues with the GCon
abstracting into a set of ACEs
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Basic Geometric Constraints (GCons)

* We have four basic GCons:
e DP1: the dot product of two vectors on two bodies is specified
e DP2:the dot product of a vector of on a body and a vector between two bodies is specified
e D:the distance between two points on two different bodies is specified
e CD: the difference between the coordinates of two bodies is specified

* Note:
e DP1 stands for Dot Product 1
e DP2 stands for Dot Product 2
e D stands for distance
e CD stands for coordinate difference
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Basic GCon: DP1

e Geometrically:

& -d; — f(t) =0

e Algebraically (matrix-vector notation):

(DDpl (iaaiajaaja f(t)) = _?A?Aja]—f(t) = (

27
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Basic GCon: DP2

e Geometrically:
6_1’?; . (i;j — f(t) =0
e Algebraically (matrix-vector notation):

(PDPQ(ia a;, gfaja gj ) f(t)) — a?A?dZJ - f(t)
= Q?A?(I'j — Ang —Tr; — Azgf) — f(t) =0

J 28
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Basic GCon: D

e Geometrically:

e Algebraically (matrix-vector notation):

(I)D(?’ S 7.77 j af( )) — dg;de_fQ(t)

— (rj-l—Ajé?—rz-—Aéf) (rj-l—Ajs r; — AisD)— f2(t) =0

29
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Basic GCon: CD

Points P and ()

e Algebraically (matrix-vector notation):

P (c,i,57,5,8%, f(t)) = Tdy—f(t) =

30
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Intermediate GCons

e Two Intermediate GCons:
e 11:avectoris perpendicular on a plane belonging to a different body
e 12:avector between two bodies is perpendicular to a plane belonging to the different body
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Intermediate GCon: L1 (Perpendicular Type 1)

o Geometrically, the motion is such that a vector c¢; on body
7 is perpendicular to a plane of body ¢ that is defined by
a; and b;

e Algebraically (matrix-vector notation):

(I)Dpl(’i,é_li,j, (__‘,jjo) ] B [ Q?A?Aj(__‘,j ] B [ 0 ]

®11(i,a;,b;, j,¢;) = ] ]
v g pLP1 (’l:, b;, 7, (_Zj, 0) szA,LTAJ(_ZJ

32
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Intermediate GCon: 12 (Perpendicular Type 2)

——
e Geometrically, a vector P;(); from body ¢ to body j re-
mains perpendicular to a plane defined by two vectors a;

and E;i

e Algebraically (matrix-vector notation):

(I)L2(iaai7bia S; :37 Q)

(I)DPQ(?» é'z,a i a]a _?30) [

®PP2(5 b;, 87, 4,59,0)

33



High Level GCons

e High Level GCons also called joints:
e Spherical Joint (SJ)
Universal Joint (UJ)
Cylindrical Joint (CJ)
Revolute Joint (RJ)
Translational Joint (TJ)
Other composite joints (spherical-spherical, translational-revolute, etc.)

iy,
FPROJECT

Z, CHRONO
T



High Level GCon: SJ [Spherical Joint]

$S7 —

CD M . _P PR
(I) (Ja?'asi 9]38

| 9P (k, 1,5

P

1

7j?§
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i 0
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High Level GCon: CJ [Cylindrical Joint] R
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High Level GCon: TJ [Translational Joint]

CJ/: =P = 1w - =0 =
P (7/; S; A, bi,], Sj :Cj)

(I)DPl

d7T7 —
(%7 a’l? j? E_]'j; CO].].St.)
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High Level GCon: RJ [Revolute Joint]

&5/ (i,8", j,57)

(I)Ll(?:a a;, B’éaja éj) ]
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High Level GCon: UJ [Universal Joint]

O

¢ = 7/
82( T/

Figure 9.4.15 Singular behavior of universal joint.
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Connection Between Basic and Intermediate/High Level GCons

DPl | DP2 | D | CD
11 ax ; ;
UJ X X X X]g,
CJ XX, [ X X] 19 A
R.J (X %] [ X X X]g;

T.J X [X X]J_l [XX]LQ

* Note that there are other GCons that are used, but they see less mileage 40
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Constraints Supported in Chrono

cylindrical gear alignment actuator cardano shaft parallelism

formula revolute prismatic point on plane plane on plane orthogonal

ey

Oldham joint lock hooke point on line universal joint

YA

p(t)

A

trajectory point on surf. SUtf.-surf.

41



New Topic:
Formulating the Equations of Motion

 Road map, full derivation of constrained equations of motion
e Step 1: Introduce the types of force acting on one body present in a mechanical system
e Distributed
e Concentrated
e Step 2: Express the virtual work produced by each of these forces acting on one body

e Step 3: Evaluate the virtual work for the entire mechanical system

e Step 4: Apply principle of virtual work (via D’Alembert’s principle) to obtain the EOM
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Generic Forces/Torques Acting on a Mechanical System

e Distributed forces
* |nertia forces
e Volume/Mass distributed force (like gravity, electromagnetic, etc.)
* Internal forces

e Concentrated forces/torques
e Reaction forces/torques (induces by the presence of kinematic constraints)
e Externally applied forces and torques (me pushing a cart)
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Virtual Work for One Body, Side Trip

e Quick example below only shows virtual work produced by the inertial force
— Same recipe applied for all other forces, distributed or concentrated

e Starting point: consider point P of body 7 associated with infinitesimal mass element dm;(P)

e Expression of the force:
—i] dm;(P)

e Virtual work produced:
[or; 1 - [=¥; dmi(P)]

e Body virtual work obtained by summing over all points P of body i:

SW = / — (01T - #F dmy(P)

e Upon expressing virtual displacement of P and its acceleration r;P ;

)

44
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Final Form, Expression of Virtual Work

e When all said and done, the expression of the virtual work assumes the form:
nb o - .
oW = Y [=or! mit; — o7l @iJiw; — o7} Jiw; + o] - FI 4+ 67l - nl
i=1

+ Or]/F¢ + ol nd + 6r] FT 4+ 67l nl | =0

e Alternatively,
nb

oW = [or] (—mgi + F]" + F¢ + F)) + o7] (—@iJiw; — Jaws + 0] + nf +0]) | =0
1=1

45



iy,
FPROJECT
Z,CHRONO
T

Moving from One Body to a Mechanical System

e Total virtual work, for the entire system, assumes the form:

nb _ = .
ow = z [—51‘?1‘17’7’2@ — 57_1'?053.]@@3 — 5’7_1'?.]@'@)@' + 51‘? -F+ (577'? -n;"
1=1

+ Or/F¢+ ol nd + 6r Fr + 67l nl | =0

e Alternatively,

nb
oW = [ ér] (—=Fm; + F]" + F¢ + F)) + 07, (—0:iJiw; — Jiwo; + 0" + nf +0]) | =0
1=1

e Recall that for each body i, virtual translations or; and virtual rotations o7; are arbitrary

46
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Equations of Motion (EOM) for A System of Rigid Bodies

e Since equation on previous slide should hold for any set of virtual displacements (dry,d7),

(6ro, 672),. . ., (Orpp, 07pp), then we necessarily have that for i = 1,... nb:
—m;t; + F* + F¢ + F7 = 03
—(f)ijf@@- — jg(ﬂz + I_lgn’ + ﬁ? + I_lg = 03

e Equivalently, fort=1,...,nb

mi¥; = FP 4+ F+F)

T . =m —q —7r = ..
Jiw;, = n, —|—H,,;‘|‘Hi—wz~]zw%

e The set of equations above represent the EOM for the system of nb rigid bodies.

47
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The Joints (Kinematic Constraints) Lead to Reaction Forces

e The collection of all nc kinematic and driving constraints — stack them together:

(q,t) = [ fpiffi) ] = Oy

e Recall that any one of the constraints in ® is one of the four basic GCons introduced earlier
e The variation of ®: stack together the variation of each of the GCons that enters in ®

e A virtual displacement of the bodies in the system will lead to a virtual variation d® that depends on the
position and orientation of the bodies:

0® = ®,.0r + II(P)d7 = 0,
e In matrix form, we can express the above relations as

5B(r,p)=| ® (P ]-{gﬂzﬁ(@).[g;}:om

e ®, . and I:[(i)): the key ingredients needed to express the reaction forces induced by the constraints ®(q,t) = 0,

48
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Switching to Matrix-Vector Notation

e Notation used to simplify expression of EOM:
— I3 is the identity matrix of dimension 3
— FY and F}" — applied and mass-distributed force, body i
— ny and n;"* — applied and mass-distributed torque, body
— m; and J; — mass and mass moment of inertia, body i

e Matrix-vector notation:

mils O3x3 ... 03x3 Ji1 03x3 ... O3x3
O3x3 mol3 ... 0O3x3 _ O3x3 J2 ... O3x3
M = J =
| O3x3 O3x3 ... mppls | | O3x3 O3x3 Jnb |
Iy W1 F{+F7" n{ + njy* — w1J 101
> - a m na e T s
u Tnp 4 3nb | Wnb d 3nb u Fnb + Fnb 4 3nb | n’ﬂb + nnb o wannbwnb d 3nb

49
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EOM: the Newton-Euler Form

Y
e According to Lagrange Multiplier theorem, there exists a vector of Lagrange Multipliers, A = : , so that
L Anc -
Mi — F oT o
_. + | - = Yenb
Jo—71 17 (®)

e Expression above: Newton-Euler form of the EOM. Equivalently expressed as:

Mt + ®/\=F
Jo+ T (@)N=1

50
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